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AbstractThe �fakeon� is a fake degree of freedom, i.e. a degree of freedom that does not belongto the physical spectrum, but propagates inside the Feynman diagrams. Fakeons can beused to make higher-derivative theories unitary. Moreover, they help us clarify how the Lee-Wick models work. In this paper we study the fakeon models, that is to say the theoriesthat contain fake and physical degrees of freedom. We formulate them by (nonanalytically)Wick rotating their Euclidean versions. We investigate the properties of arbitrary Feynmandiagrams and, among other things, prove that the fakeon models are perturbatively unitaryto all orders. If standard power counting constraints are ful�lled, the models are alsorenormalizable. The S matrix is regionwise analytic. The amplitudes can be continued fromthe Euclidean region to the other regions by means of an unambiguous, but nonanalytic,operation, called average continuation. We compute the average continuation of typicalamplitudes in four, three and two dimensions and show that its predictions agree with thoseof the nonanalytic Wick rotation. By reconciling renormalizability and unitarity in higher-derivative theories, the fakeon models are good candidates to explain quantum gravity.
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Various issues concerning the formulation of the LW theories remained open for a longtime. For example, if they are de�ned as initially suggested by Lee [4], the models violateLorentz invariance [5]. This problem is due to the incompleteness of the initial Lee-Wickprescription. Lee and Wick speci�ed how to integrate on the loop energies, but did notprovide a compatible prescription for the integrals on the loop space momenta.To overcome these di�culties, further prescriptions were supplemented later. For exam-ple, in ref. [3] a procedure of limit, which is known as CLOP prescription, was proposedto treat the critical situations where the LW poles pinch the integration paths on the com-plex energy planes. Lorentz invariance is recovered [6], but in some one-loop diagrams theCLOP prescription is ambiguous [7] and other ambiguities are expected at higher orders [3].Moreover, it is unclear how to incorporate the CLOP prescription at the Lagrangian levelor in the Feynman rules.The problems were recently solved by reformulating the LW models by (nonanalytically)Wick rotating their Euclidean versions [7]. This procedure not only provides the correctprescription to integrate on the loop energies, which agrees with the Lee-Wick one, but alsoprovides the natural companion prescription to integrate on the loop space momenta.Brie�y, the Lee-Wick integral on the loop energies includes complex values, so an inte-gral on real values of the loop space momenta is not compatible with Lorentz invariance.However, if the integration domain on the loop space momenta is deformed in a suitableway to include complex values, Lorentz invariance is recovered.It turns out that the Wick rotation is analytic only in a region of the space P of the(complexi�ed) external momenta, the region that contains the purely imaginary energies.We call it main region and denote it by A0. The Wick rotation is nonanalytic elsewhere,due to the LW pinching [7]. In the end, the space P is divided into disjoint regions Ai ofanalyticity. A loop integral gives an analytic function in each Ai. The relations among thefunctions associated with di�erent regions are unambiguous, but not analytic.The domain deformation mentioned above is simple to formulate, but hard to implementpractically. Fortunately, there exists a shortcut to get directly to the �nal result, which issimple and powerful. As said, the Wick rotation is analytic inA0. The obstacles that preventthe analytic continuation beyond A0 are the LW thresholds, associated with LW poles thatpinch the integration paths on the energies. The thresholds have the form p2 = M̃2, where
p is a linear combination of incoming momenta and M̃ is a linear combination of (possiblycomplex) masses. A LW threshold can be analytically overcome in two independent ways.Neither of the two is separately compatible with unitarity and there is no way to choosebetween them. We show that the nonanalytic Wick rotation picks the arithmetic average of3
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the two continuations, which we call average continuation. The �nal amplitudes are unitary,Lorentz invariant and analytic in every Ai, i 6= 0, although not analytically related to theamplitudes evaluated in A0.In this paper we study these issues in detail in arbitrary diagrams and show that theformulation of the LW models is consistent to all orders. We compute the average con-tinuation of typical physical amplitudes in four, three and two spacetime dimensions andprovide numerical checks that the average continuation and the nonanalytic Wick rotationgive the same results. Moreover, we prove that the LW models are perturbatively unitaryto all orders and show that their renormalization coincides with the one of their Euclideanversions. This property ensures that the locality of counterterms and the usual rules ofpower counting hold in every region Ai.The average continuation is an extremely powerful tool. It simpli�es the computationof the amplitudes in the regions Ai, i 6= 0. It eliminates the need of starting from theEuclidean space and performing the Wick rotation. It allows us to prove the perturbativeunitarity to all orders in a relatively straightforward way. It gives an e�cacious control onthe renormalization.In ref. [8] the perturbative unitarity of the LW models was proved at one loop. Thegeneralization of the proof to all orders can be worked out by �rst deriving the so-calledcutting equations [9, 10, 11] (which imply the unitarity equation SS† = 1), in the mainregion A0 and then proving that they can be average-continued to the other regions Ai.The �nal cutting equations have the expected, unitary form and propagate only the physicaldegrees of freedom. We actually need to work with generalized versions of the equations,which are proved starting from the algebraic cutting equations (ACE) of ref. [11], a setof polynomial identities associated with Feynman diagrams which are particularly �t toperform the average continuation from A0 to Ai.We recall that the cutting equations imply SS† = 1 straightforwardly in the modelsinvolving just scalar �elds and fermions. In gauge theories [12] and gravity [10], they implya pseudounitarity equation, which turns into the unitarity equation after proving that thetemporal and longitudinal components of the gauge �elds are compensated by the Faddeev-Popov ghosts.It is important to stress that not all the higher-derivative theories fall in the Lee-Wickclass. For example, the Lee-Wick models of quantum gravity are typically superrenormal-izable. The reason is that the LW poles must come in complex conjugate pairs, whichrequires many higher derivatives. With fewer higher derivatives we may build a strictlyrenormalizable theory [13], but then the free propagators have ghost poles with real squared4
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masses. In ref. [14] it was shown that it is possible to double such poles by means of a newquantization prescription and treat them as LW poles associated with a �ctitious LW scale
E that is sent to zero at the very end. This leads to the introduction of the notion of fakedegree of freedom, or �fakeon�. Once a pole is doubled according to this prescription, it canbe consistently dropped from the physical spectrum. Turning ghosts into fakeons allows usto make the higher-derivative theories unitary.The notion of fakeon generalizes the ideas of Lee and Wick and actually clari�es theircrucial properties. For example, the nonanalyticity of the S matrix due to the LW pinchingcan be seen as associated with a fakeon of a �nite LW scale E = M . For this reason, the LWmodels are particular �fakeon models�, by which we mean models with physical degrees offreedom and fakeons. The results of this paper, such as the proof of perturbative unitarityto all orders, hold in all the fakeon models.We recall that the LW models are also investigated for their possible phenomenologicalimplications, for example in QED [2], the standard model [15] and grand uni�ed theories [16],besides quantum gravity [17, 18, 14]. The results of this paper and refs. [7, 8, 14] raise thefakeon models to the status of consistent fundamental theories, since the theoretical problemsthat could justify a certain skepticism around them are now overcome. In particular, wehave viable candidates to explain quantum gravity within quantum �eld theory. Among thevarious possibilities, a unique one is strictly renormalizable [14].The paper is organized as follows. In sections 2 and 3 we recall the formulation of theLee-Wick models as nonanalytically Wick rotated Euclidean theories and investigate theirmain properties in arbitrary Feynman diagrams. In particular, in section 2 we study the LWpinching, while in section 3 we study the domain deformation. In section 4 we de�ne theaverage continuation of an analytic function and analyse its properties. We also de�ne thedi�erence continuation, which is useful for the cutting equations. In section 5 we study theaverage continuation of typical amplitudes in various dimensions and numerically comparethe results with those of the nonanalytic Wick rotation. In section 6 we recall the de�nitionof fakeon and it main properties. In section 7 we prove the perturbative unitarity of thefakeon models to all orders. In section 8 we show that the counterterms of the fakeon modelsare the same as those of their Euclidean versions. Section 9 contains the conclusions.2 Lee-Wick modelsIn this section we study the Lee-Wick models by nonanalytically Wick rotating their Eu-clidean versions. The arguments hold to all orders in spacetime dimensions D greater than5
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Figure 1: Lee-Wick integration pathor equal to two, in local quantum �eld theories whose free propagators have poles that are lo-cated symmetrically with respect to the real axis of the complex energy plane, with squaredmasses that have nonnegative real parts. The poles located on the real axis are called stan-dard poles and the other ones are called LW poles. The standard poles are physical if theyhave positive residues.Observe that derivative vertices and propagators with nontrivial numerators do notchange the analysis that follows. What matters in a loop integral are the singularitiesof its integrand, i.e. the denominators of the propagators.Before plunging into the nonanalytic Wick rotation, let us stress why alternative ap-proaches to the formulation of higher-derivative theories are not viable. Letting aside adhoc prescriptions such as the CLOP one, which cannot be incorporated at the level of theFeynman rules and lead to ambiguous results, a natural formulation that may come tomind is the Minkowski one, where the loop energies are integrated on their natural, realvalues. Recently, it has been shown that the Minkowski formulation generates nonlocal,non-Hermitian divergences that cannot be removed by any standard procedures [19]. Inthe few cases where the locality of counterterms is not violated, the amplitudes are notconsistent with perturbative unitarity [8]. These observations lead us to conclude that theMinkowski formulation is not the right one. The only chance to de�ne the higher-derivativemodels consistently is the Wick rotation of their Euclidean versions.The simplest example of LW propagator is
S(p,m) =

1

p2 −m2 + iε

M4

(p2 − µ2)2 +M4
, (2.1)where M and µ are real mass scales. The poles of this propagator are shown in �g. 1.The standard poles are encircled and read p0 = ±ωε(p), where ωε(p) =

√

p2 +m2 − iε and6
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Figure 2: Lee-Wick integration path for the bubble diagram (left) and LW pinching (right)
p = (p0,p). The LW poles are not encircled and read p0 = ±Ω+(p) and p0 = ±Ω−(p),where Ω±(p) =

√

p2 +M2
± and M± =

√

µ2 ± iM2. We call the pairs of poles Ω± and
−Ω± Lee-Wick pairs. Note that the Minkowski and Euclidean versions of the theories arenot equivalent, since the free propagators have poles in the �rst and third quadrants of thecomplex plane.Following ref. [7], the loop integrals are de�ned starting from the Euclidean version ofthe theory. In the case of the tadpole diagram, the Wick rotation leads to the integrationpath shown in �g. 1. We see that the poles that are located to the right (resp. left) of theimaginary axis are below (above) the integration path.The bubble diagram

B(p) =
∫

dDk

(2π)D
S(k,m1)S(k − p,m2), (2.2)which involves the product of two propagators, better illustrates the general case. There,the Wick rotation leads to integration paths of the form shown in the left picture of �g. 2.The thick crosses denote the poles of the propagator S(k− p,m2), which depend on p. Theother crosses denote the poles of S(k,m1), which are �xed.The general rule, which holds for arbitrary diagrams, is that the right (resp. left) poles ofa propagator � i.e. those whose energies have positive (negative) real parts at zero externalmomenta � are located below (above) the integration path.When we wary p, a LW pole of S(k−p,m2) can approach a LW pole of S(k,m1) from theopposite side of the integration path. When the two come to coincide, we have a Lee-Wickpinching. The standard poles can give the usual pinching, which we call standard pinching.Similarly, a mixed LW pinching involves a LW pole and a standard pole.The condition for having a LW pinching is a system of two pole conditions. For example,7



18A1Renor
m

Re[p0]

γ

PP ′

Im[p0]

Figure 3: Surfaces of LW pinching at p 6= 0the right picture of �g. 2 describes the simultaneous pinching of the poles of two LW pairs.The conditions for the top pinching are
k0 = Ω+(k), k0 − p0 = −Ω−(k− p), (2.3)while the conditions for the bottom pinching are their complex conjugates (with the un-derstanding that the conjugation does not act on the momenta). Solving (2.3) for k0, weobtain

p0 = Ω+(k) + Ω−(k− p). (2.4)Varying k in R
3 with p real and �xed, the solutions of this equation �ll the region enclosedinside the curve γ of �g. 3.Other LW pinchings occur for

p0 = Ω+(k) + Ω+(k− p), p0 = Ω−(k) + Ω−(k− p), (2.5)and �ll the regions enclosed inside the other two curves of �g. 3. Finally, we have the regionsobtained by re�ecting (2.4) and (2.5) with respect to the imaginary axis.Summarizing, the complex plane is divided into certain regions, which we denote by Ãi.The curve γ is the boundary of the region ÃP that intersects the positive real axis. Theregion that contains the imaginary axis is denoted by Ã0.The regions Ãi are not Lorentz invariant, which is the reason why they are not the �nalanalytic regions Ai. For example, the threshold of the LW pinching given by eq. (2.4) isthe point P with
p2 = 2µ2 + 2

√

µ4 +M4 ≡ 2M2LW,8
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as we prove below. However, the intersection between the curve γ and the real axis is not
P , but a di�erent point P ′. It is useful to introduce two functions

η±(x) ≡
1√
2

√√
x2 +M4 ± x, (2.6)so that, for x > 0, √

x± iM2 = η+(x)± iη−(x).Then the point P ′ has energy
p0 = 2η+(p

2/4 + µ2). (2.7)This relation cannot be expressed as a Lorentz invariant threshold condition of the form
p2 = M̃2 for M̃ = 2η+(µ

2).For a while, we focus on real external momenta p, which are the ones of physical interest.Note that (2.7) satis�es 4µ2 6 p2 6 2M2LW, where the equalities holds for p2 = ∞ and p = 0,respectively.We de�ne the Euclidean region as the strip |Re[p0]| < |p|, which contains the imaginaryaxis. It is easy to check that the LW pinching conditions do not admit solutions there.Indeed, formulas (2.4) and (2.5) show that when a LW pinching occurs, the minimum of
|Re[p0]| is the right-hand side of (2.7), which is greater than or equal to √p2 + 4µ2. Inparticular, the Euclidean region is a subregion of Ã0.We de�ne the loop integral B(p) as follows. First, we integrate on the loop energy k0 bymeans of the residue theorem. Then, we concentrate on the Euclidean region and integratethe loop space momentum k on its natural domain R3. Since no LW pinching occurs,the result is analytic (and Lorentz invariant) but for the branch cuts associated with thestandard pinching.Next, we ask ourselves if we can analytically extend the result away from the Euclideanregion. Focusing on the real axis, we �nd no obstacle for p2 < 4µ2, because all such pointsare below P ′. We can also reach values p2 > 4µ2, as long as we restrict the Lorentz frameto the subset where the LW pinching does not occur for any k ∈ R3. The good frames arethose that have energies p0 smaller than the energy of P ′. By formula (2.7), this conditioncan be written as

p2 <
4M4

p2 − 4µ2
− p2, (2.8)which admits solutions if and only if p2 < 2M2LW (with p2 > 4µ2).In the end, for p2 < 2M2LW, there is always an open subset L of Lorentz frames whereno LW pinching occurs and we can evaluate the loop integral by integrating k on R3. The9
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result is the analytic continuation of the function obtained in the Euclidean region. Since itdoes not depend on the Lorentz frame, it can be straightforwardly extended from L to thewhole space of Lorentz frames.We have thus proved that the true LW threshold is the point P of �g. 3, beyond whichthe LW pinching is inevitable and the region Ã0 cannot be extended further. The region
A0, which is the maximal extension of Ã0, stops at P .The true challenge of the Lee-Wick models is to overcome the LW threshold P . Tomake a step forward towards the solution of this problem, we generalize the calculation justdescribed as follows. So far, we have calculated the loop integral in a speci�c subset L ofLorentz frames, for 4µ2 < p2 < 2M2LW, because we wanted to be able to integrate k on R

3.Then, we extended the result to all the Lorentz frames by Lorentz invariance. If we wantto make the calculation for 4µ2 < p2 < 2M2LW directly in an arbitrary Lorentz frame, wemust deform the k integration domain Dk to ensure that the LW pinching does not occurfor any p2. For example, if OP denotes the portion of the real axis with p2 > 2M2LW, p0 > 0,we can choose a deformation that squeezes the region ÃP onto OP (see the next section fordetails). Observe that OP is Lorentz invariant.The good news is that the domain deformation just mentioned allows us to work outthe loop integral even beyond the LW threshold P . In that case, we have to proceed asfollows. Let Ãdef
P denote the deformed region ÃP , before it is squeezed onto OP . Let Ddef

kdenote the k integration domain associated with Ãdef
P . We go inside Ãdef

P and evaluate theloop integral B(p) there. Since the condition (2.4) is complex, it can be split into two realconditions x = y = 0 for suitable functions x and y of k. Changing variables, in D > 3 thesingularity has the form
dxdy

x+ iy
, (2.9)which is integrable. In D = 2 there is no singularity, because the pinching just occurs at theboundaries γ, γdef of the regions ÃP , Ãdef

P . We view the result of the calculation in Ãdef
P asa function of the k integration domain Ddef

k . When we �nalize the deformation that takes
Ãdef

P to OP , we obtain the value of the loop integral on the real axis above the LW threshold
P . At the end, we can take AP = OP . Alternatively, we can analytically continue the resultfound in OP to a neighborhood of OP and take that neighborhood as the �nal region AP(reducing A0 correspondingly).Before the squeezing of ÃP to OP , the result of the loop integral in ÃP is neitheranalytic nor Lorentz invariant, in dimensions greater than or equal to three. On the otherhand, two dimensions are exceptional, because in D = 2 the LW pinching occurs only at the10
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Figure 4: Box and chestnut diagramsboundaries of the regions Ãi, i 6= 0, but not inside. Consequently, the loop integral is bothLorentz invariant and analytic in (a neighborhood of) OP , even before making the domaindeformation. We check these properties explicitly in the examples of section 5. In the nextsection we explain in detail how the domain deformation works in arbitrary D > 2.So far, we have focused on the LW thresholds that are located on the real axis. Sim-ilar arguments hold for the other LW pinchings (2.5), whose thresholds are the points ofminimum Re[p0] of the corresponding regions Ãi. It is easy to check that such pointshave Re[p0] = 2η+(p
2/4 + µ2) and Im[p0] = ±2η−(p

2/4 + µ2), so the thresholds are
p2 = 4µ2 ± 4iM2. When p → 0 the corresponding regions Ãi squeeze onto curves withendpoints at the thresholds. The calculations beyond such thresholds are performed with aprocedure analogous to the one described above: �rst, we evaluate the loop integral insidea region Ãi; then, we deform the k integration domain till Ãi gets squeezed onto a curve;�nally, we take such a curve as the �nal region Ai, or enlarge it to some neighborhood of itby analytic continuing the result found in it.More complicated one-loop diagrams can be studied similarly. As an example, considerthe box diagram shown in the left picture of �g. 4. We assume that the propagators havethe same masses m, µ and M , for simplicity. The pinchings may occur when two, three orfour propagators have simultaneous pole singularities.Decomposing into partial fractions, the integrand can be written as a sum of terms

1

(z − σ1a)(z − σ2b)(z − σ3c)(z − σ4d)
, (2.10)where z denotes the loop energy k0, σi = ±1 and each a, b, c, d is a frequency ωε or Ω± plusa linear combination of incoming external energies. The poles with σi = 1 lie one side ofthe z integration path, while the poles with σi = −1 lie on the other side. If all the σi areequal, the residue theorem gives zero. If σ1 = 1, σ2 = σ3 = σ4 = −1, the residue theorem11
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give a result proportional to
1

(a+ b)(a + c)(a+ d)
. (2.11)If σ1 = σ3 = 1, σ2 = σ4 = −1, the residue theorem gives

1

(a + d)(c+ b)(c + d)
+

1

(a + b)(a+ d)(c+ b)
. (2.12)Each singularity of (2.11) and (2.12) has the form (2.4) or (2.5). The other cases arepermutations of the ones just described. Note that the frequencies are always summed withpositive relative signs.In the end, we only have situations that are analogous to those already met in the caseof the bubble diagram. The LW thresholds are

p2i = 2M2LW, (p1 + p2)
2 = 2M2LW, (p2 + p3)

2 = 2M2LW, (p1 + p2 + p3)
2 = 2M2LW,where pi, i = 1, 2, 3 denote the incoming momenta shown in the picture.The evaluation of the loop integral proceeds as before. We �rst compute it in theEuclidean region, where no LW pinching occurs, by integrating the loop space momentum

k on R3. Then we extend the result by analytic continuation to Ã0. Third, we maximizethe region Ã0, again by analytic continuation, which identi�es the region A0. Beyond A0we �nd obstacles, given by the LW thresholds. We overcome those obstacles by going insidethe regions Ãi, i 6= 0, and then deforming the k integration domain to squeeze those regionsinto curves. At the end, we may de�ne the regions Ai as neighborhoods of those curves. Wearrange each Ai so as to make it Lorentz invariant for real external momenta.2.1 LW pinching beyond one loopBefore considering an arbitrary multiloop diagram, we begin with the chestnut diagramshown in the right picture of �g. 4. The propagators 1 and 2 depend on one loop momentum,which we call k. The integration path over k0 gets pinched when two poles come to coincidefrom opposite sides. This gives relations of the form
k0 = ω̃1(k), k0 − p0 = −ω̃2(k− p),where ω̃i can stand for ωε or Ω± and p is an external momentum. Integrating over k0 bymeans of the residue theorem, we remain with a single pole, which occurs for

p0 = ω̃1(k) + ω̃2(k− p). (2.13)12
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This condition is analogous to (2.4) and (2.5).Now, let us consider the propagators 1, 3 and 4. They depend on two loop momenta, k1and k2, which we assign to the legs 1 and 4. Their simultaneous singularities give pinchingconditions of the form
k0
1 = ω̃1(k1), k0

2 = ω̃2(k2), k0
1 + k0

2 − p0 = −ω̃3(k1 + k2 − p),where p is a sum of incoming external momenta. The signs in front of the frequencies ensurethat the �rst and third pole lie on opposite sides with respect to the k0
1 integration path,while the second and third pole lie on opposite sides with respect to the k0
2 integration path.The integrals over k0

1 and k0
2 eliminate the �rst two conditions and turn the third one into

p0 = ω̃1(k1) + ω̃2(k2) + ω̃3(k1 + k2 − p). (2.14)Now, let us consider the contribution
1

(z1 − a)(z1 + b)(z1 + z2 + c)(z2 − d)
,where z1 = k0

1, z2 = k0
2 and a, b, c and d are de�ned as before and associated with the legs 1,2, 3, and 4, respectively. A pinching can occur, since a lies on one side of the z1 integrationpath, with b, c on the other side of it, and at the same time c and d lie on opposite sides ofthe z2 integration path. The residue theorem gives a result proportional to

1

(a+ b)(a + c+ d)
.The denominator vanishes in three situations, two minimal and one nonminimal. Theminimal condition a + b = 0 has the form (2.13). The minimal condition a + c + d = 0 hasthe form (2.14). The nonminimal condition is the system made of the two.The calculation can proceed as in the one loop case, the only di�erence being that atsome point we have to deform the integration domains of both loop space momenta. Theother contributions to the chestnut diagram can be treated similarly.The arguments just given can be generalized to diagrams with arbitrary numbers ofloops. The minimal con�guration of pole singularities which may give a pinching occurswhen the number n of propagators that have simultaneous pole singularities is equal to thenumber of loop momenta they depend on, plus one. If we parametrize the loop momenta in aconvenient way, the �rst n−1 conditions read k0

i = ω̃i(ki), i = 1, . . . n−1. After integratingon the loop energies k0
i by means of the residue theorem, the last condition becomes

Dpinch = 0, (2.15)13
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where
Dpinch ≡ −p0 +

n−1
∑

i=1

ω̃i(ki) + ω̃n

(

n
∑

i=1

ki − p

) (2.16)and p is again a sum of incoming external momenta. This is the minimal pinching con-dition, with a convenient parametrization for the momenta. More generally, the ki maybe independent linear combinations of the loop momenta (with coe�cients ±1) plus linearcombinations of the external momenta.The most general con�guration of pole singularities arises as a superposition of mini-mal con�gurations (plus con�gurations of singularities that give no pinching, which we canignore). Then, the most general pinching condition is just a system made of minimal condi-tions. For this reason, it is su�cient to study the minimal condition, in the parametrization(2.16).We may have a pure LW pinching, where only LW poles are involved, a mixed LWpinching, where both LW and standard poles are involved, and a standard pinching, whereonly standard poles are involved.An important fact is that the signs in front of the frequencies that appear on the right-hand side of (2.16) are always positive. The reason is that the pinching just occurs betweenright and left poles of di�erent propagators, the right ones being placed below the integrationpath on the loop energy and the left ones being placed above it. There is no pinchingbetween two right poles or two left poles (which would generate minus signs in front of thefrequencies), because they are located on the same side of the integration path.The threshold associated with the pinching condition (2.15)-(2.16) is
p2 =

[

n
∑

i=1

ω̃i(0)

]2

. (2.17)This formula is a straightforward generalization of the one that holds in the standard case,but must be proved anew, because the LW pinching involves unusual features, such as theextended regions Ãi that violate Lorentz invariance in some intermediate steps.Speci�cally, the thresholds are found by means of a two-step procedure: �rst we minimize
Re[p0] in ki and then we maximize Re[p2] in p. Referring to the analysis made at one loopfor thresholds on the real axis, the �rst step corresponds to identifying the point P ′ of �g. 3and the second step corresponds to deforming P ′ into P . Now we prove that this proceduredoes give formula (2.17).Let us �rst consider the case where only LW poles are involved, i.e. n+ frequencies ω̃i14
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are equal to Ω+ and n− frequencies ω̃i are equal to Ω−, with n = n+ + n−. We have
Re[p0] =

n−1
∑

i=1

η+(k
2
i + µ2) + η+

(

K2 + µ2
)

, (2.18)where η+ is de�ned in formula (2.6) and
K =

n−1
∑

i=1

ki − p.Minimizing Re[p0] in ki, we obtain ki = p/n for every i, which gives
p0=nη+(p

2/n2 + µ2) + i(n+ − n−)η−(p
2/n2 + µ2), (2.19a)

p2=4n+n−η
2
−(p

2/n2 + µ2) + n2µ2 + i(n2
+ − n2

−)M
2. (2.19b)The maximum of Re[p2] in p is its value for p = 0, which gives the thresholds

p2 = (n2
+ + n2

−)µ
2 + 2n+n−

√

µ2 +M4 + i(n2
+ − n2

−)M
2.The result agrees with (2.17), since Ω±(0) = η+(µ

2) ± iη−(µ
2). The thresholds on the realaxis are those with n+ = n−.Observe that no LW pinching occurs in the Euclidean region |Re[p0]| < |p|. Indeed,using formula (2.19a) we �nd that wherever a LW pinching occurs the inequalities

|Re[p0]| > |Re[p0]|min = nη+(p
2/n2 + µ2) >

√

p2 + n2µ2hold.Next, let us consider the mixed LW pinching, where both standard poles and LW polesare present. We assume that µ and M are the same everywhere, but the standard massesare generic. We separate the last standard pole, with mass m, from the other ones, withmasses mj and loop space momenta qj. Then, we get the condition (2.15) with
Dpinch = −p0 +

n+
∑

i=1

Ω+(ki)+

n
∑

i=n++1

Ω−(ki) +

r−1
∑

j=1

ω(qj, mj) + ω (Q,m) . (2.20)Here we have de�ned ω(p, m) =
√

p2 +m2 and
Q =

r−1
∑

j=1

qj +K, K =

n
∑

i=1

ki − p.15
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First, we minimize Re[p0] in q, which is straightforward. Indeed, translating Re[p0] by aconstant, this operation just gives the threshold of the standard pinching. We thus �nd
qj = − mj

mtotK, mtot = m+
r−1
∑

j=1

mj , (2.21)and
Re[p0] =

n
∑

i=1

η+(k
2
i + µ2) + ω(K, mtot),Now we minimize Re[p0] in ki, which gives ki = pα(p) ≡ s for every i, for some function

α of p. It is convenient to express everything in terms of s rather than p. We �nd
p = ns+

2smtotη′+
√

1− 4s2η′2+
, (2.22)where η′+(x) = dη′+(x)/dx. Unless speci�ed di�erently, here and below the arguments of η+,

η− and their derivatives are s2+µ2. It is easy to check that the argument of the square rootin (2.22) is always positive.Formula (2.21) gives qj = mj(p− ns)/mtot. Using (2.22) inside Dpinch = 0, we get
p0=nη+ +

mtot
√

1− 4s2η′2+
+ i(n+ − n−)η−, (2.23a)

Re[p2] =m2tot + nµ2 + 4n+n−η
2
− + 2nmtot η+ − 2s2η′+

√

1− 4s2η′2+
. (2.23b)At this point, we maximize Re[p2] in p. We can actually maximize it in s, since dp2/ds2is always positive. It is easy to show that the right-hand side of (2.23b) is a monotonicallydecreasing function of s2, so the maximum of Re[p2] coincides with its value at s = 0, whichgives the threshold

p2 = (n+M+ + n−M− +mtot)2 , (2.24)in agreement with (2.17).Again, no LW pinching occurs in the Euclidean region |Re[p0]| < |p|. Indeed, for arbi-trary ki and qj , the LW pinching conditions Dpinch = 0 imply
(Re[p0])2 − p2 > (Re[p̃0])2 − p2 > (Re[p̃0])2 − (Im[p̃0])2 − p2 = Re[p̃2] > 0,where p̃ = (p̃0,p) is the momentum p that minimizesRe[p0] in ki and qj , encoded in formulas(2.23a) and (2.23b). 16
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Re[p0]P1 P2 P3 P4

Figure 5: Standard and LW thresholds close to the real axisConsider a Feynman diagram G with n + 1 external legs. Let p1, · · · , pn denote theincoming momenta of n external legs. The thresholds read
(

∑

i∈I

pi

)2

= M̃2, (2.25)where I is a subset of indices of the incoming momenta and M̃ is positive sum of ordinarymasses m and LW masses M±. Note that the incoming momentum of the (n+1)th externalleg is
pn+1 = −

n
∑

i=1

pi,so whenever a sum of incoming momenta includes pn+1 it can be written as minus a sum of
pi. Since the overall sign is immaterial for the left-hand side of (2.25), we can always writethe thresholds as in that formula.The number of thresholds (2.25) and regions Ãi of each loop integral is �nite. If themasses mj are nonvanishing and �nitely many, the number of thresholds of an amplitude is�nite within any compact energy range, even after summing the loop corrections to all orders.That number becomes in�nite when some masses mj vanish. This is the known problem ofthe infrared divergences, which is dealt with by means of resummation techniques [20].Strictly speaking, the sum mtot of standard masses in formula (2.24) should be equippedwith a small negative imaginary part, coming from the width ε of the propagator (2.1). Inseveral calculations, as well as the proof of perturbative unitarity of section 7, it is necessaryto work at ε 6= 0. Then the thresholds (2.24) with n+ = n− are not exactly on the realaxis for mtot 6= 0, but a bit displaced from it. As before, when LW poles are involved,the conditions (2.15) identify extended regions Ãi, i 6= 0. Since ε is supposed to be small,while M is �nite, the regions Ãi always intersect the real axis in a segment, when n+ = n−.A typical situation is shown in �g. 5, where P1 and P3 are standard thresholds, while P2and P4 are LW thresholds. For convenience, we have drawn the branch cuts ending at thestandard thresholds so that they do not intersect the regions Ãi, i 6= 0.17
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Re[kx]

Im[kx]

P

Re[kx]

Im[kx]

P

Figure 6: Solutions (3.1) of the pinching condition (2.4) as functions of p0 in D = 2, forIm[p0] & 0 and Im[p0] . 0, respectively. The vertical line is Re[kx] = px/2A loop integral I is �rst evaluated in the Euclidean region, by integrating on the naturalreal domain R3(n+r−1) of the loop space momenta ki and qj. Then the result is extendedby analytic continuation to Ã0 and A0. Above the LW thresholds, the integration domain
Dk,q on ki and qj is deformed from R3(n+r−1) till the regions Ãi, i 6= 0, squeeze ontoLorentz invariant surfaces Li. The calculation of I is performed inside each deformed Ãi,
i 6= 0, before �nalizing the squeezing. Once the squeezing is �nalized, the results foundin the surfaces Li are extended to neighborhoods of them by analytic continuation. Thoseneighborhoods can be taken as the the regions Ai, i 6= 0. For every threshold with n+ = n−,the corresponding region Ai is enlarged enough till it intersects the real axis in a segment,as in �g. 5. Note that the singularities 1/Dpinch associated with the LW pinchings have theform (2.9) and so are integrable.3 The domain deformationIn the most general case, the deformation of the integration domain on the loop spacemomenta, required by the nonanalytic Wick rotation, is a rather involved process. However,its main features are relatively simple. In this section we illustrate them in detail, startingfrom the bubble diagram in D = 2, then generalizing the arguments to arbitrary D andarbitrary diagrams.3.1 Domain deformation in the bubble diagramConsider the LW pinching condition (2.4) in D = 2, setting p = (p0, px), k = (k0, kx). Thesolutions kx read

18
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Figure 7: Solutions (3.1) for Im[p0] = 0

k±
x (p) =

px
2

+ i
M2

p2

(

px ± p0
√

1 +
µ2

M4
p2 − (p2)2

4M4

)

. (3.1)Let us keep px �xed (and real) and view k±
x as functions of p0. If we move p0 on �g. 3 alonglines parallel to the real axis, with Im[p0] & 0 and Im[p0] . 0, we obtain the pictures of �g.6 (where M = µ = px = 1). In each picture, the trajectories are the functions k±

x (p) andthe arrows point towards growing values of Re[p0]. As long as Im[p0] 6= 0, the trajectoriesdo not intersect each other. If we take the limit Im[p0] → 0, we obtain �g. 7, where thepoints ai with the same index i correspond to solutions kx with the same value of p0.The natural kx integration domain is the kx real axis. In this discussion we denote itby D1. Let us follow the solutions of �g. 7 and see how the integration domain must bedeformed to have analyticity. Referring to �g. 3, we start from the segment of the p0 realaxis that is located below P ′. A typical point there is sent into the two points a1 of �g. 7,which are located on opposite sides of the domain D1. When p0 increases, one trajectory k±
xintersects D1 (which happends when p0 reaches the point P ′). The segment of the p0 realaxis contained between P ′ and P is represented by the points a2 in the kx complex plane,which are located on the same side of D1. The loop integral, as a function of p0, can beanalytically extended beyond P ′ by deforming D1 into some new domain D2 that looks likethe one shown in the �rst picture of �g. 8, so that the points a2 are left on opposite sides.When p0 continues to increase and reaches the point P , the two trajectories hit eachother. There, it is impossible to keep the solutions k±

x on opposite sides of the kx integrationdomain. This means that the loop integral cannot be analytically extended beyond P bymoving p0 along the real axis. The point P is the sole and true case where the pinching19
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D1 Re[kx]

Im[kx]

P
a2

a2

D2

Re[kx]

Im[kx]

Pa3 a3 D3

Re[kx]

Im[kx]

Pa3 a3
D′

3

D1 D1Figure 8: Basic domain deformationcannot be avoided. It is obtained by setting the argument of the square root of (3.1) to zero,which gives the LW threshold p2 = 2M2LW, in agreement with the results of the previoussection.Larger real values of p0 take us into the portion OP of the real axis above P , which isrepresented by the points a3 of �g. 7. There are two types D3 and D′
3 of deformed domainsthat leave those points on opposite sides, as shown in the second and third pictures of �g.8. The two possibilities correspond to reaching OP by giving p0 a small positive, or smallnegative, imaginary part. Indeed, we know from �g. 6 that the analytic continuation �ndsno obstacles in those cases, because the kx trajectories never intersect each other.In the end, we have two analytic continuations from Ã0 to OP , one obtained by circum-venting P from the half plane Im[p0] > 0 and the other one obtained by circumventing Pfrom the half plane Im[p0] < 0. We will see in section 4 that the result of the loop integralabove P is the arithmetic average of the two (average continuation).Finally, the region ÃP can be completely squeezed onto OP by deforming D1 into thedomain DP made of the curve that crosses the points a3 of �g. 7. Indeed, �g. 9 shows that

DP always leaves the solutions k±
x on the same side, no matter how small |Im[p0]| is taken.The arguments can be easily extended to arbitrary dimensions D greater than two.Assume that the external space momentum p is directed along the x direction. Writing

p = (p0, px, 0) and k = (k0, kx,k⊥), it is easy to check that the conditions (2.4) and (2.5) in
D > 2 are obtained from those in D = 2 by means of the replacement µ2 → k2

⊥ + µ2 ≡ µ̃2.Then it is apparent that to squeeze the region ÃP onto OP we do not need to deform k⊥ tocomplex values, since it is enough to deform the kx integration domain as explained above,for every µ̃2.To summarize, the equations (2.4) and (2.5) tell us when the integration path on the loopenergy gets pinched. However, in most cases the pinching is eventually avoided by deformingthe integration domain on the loop space momenta. The pinching is inevitable only at theLW thresholds. Since the LW thresholds are Lorentz invariant, Lorentz invariance is nevertruly violated. Moreover, the regions Ãi, i 6= 0, can be deformed and squeezed at will.20
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Figure 9: Domain DP that squeezes ÃP onto OPThe regions located above the LW thresholds can be reached analytically from the regionslocated below the LW thresholds in two independent ways.It should also be noted that everything we have said so far equally applies to the standardthresholds and actually o�ers a new approach to investigate their properties. In the limit
M → 0 the solutions (3.1) become

k±
x (p) =

px
2

± p0

2

√

1− 4µ2

p2
.In particular, we can appreciate why the thresholds are the only points of true pinching,while the points lying on the branch cuts are not. Indeed, the branch cuts can be displacedat will by deforming the integration domains on the loop space momenta.3.2 Domain deformation in more complicated diagramsNow we study the domain deformation in the diagrams with more loops and/or more inde-pendent external momenta.If we have a single threshold, the analysis of the previous subsection can be repeated withstraightforward modi�cations. A unique combination p of external momenta is involved. Ifthe pinching conditions involve a unique loop momentum k, the analysis is exactly the sameas before. If they involve more than one loop momenta, we simply have more freedom toperform the domain deformation.Thus, we can concentrate on the case of multiple LW thresholds. We begin from twoLW thresholds involving the same combination p of external momenta. We denote themby P1: p2 = M̃2

1 , P2: p2 = M̃2
2 , etc. Let us assume the worst scenario (which reduces the21
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P2
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Im[kx]

P1
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DP2

Figure 10: Multiple thresholds with the same external momentum pfreedom to make the deformation to a minimum), where there is a unique loop momentum
k. As before, we choose p = (p0, px, 0), k = (k0, kx,k⊥). Consider the condition (2.4)with µ → µ1, M → M1, together with the same condition (2.4) with µ → µ2, M → M2.Formula (3.1), suitably adapted to the present case, gives the solutions kx. Observe thatthe vertical line Re[kx] = px/2 of �g. 7 does not depend on the masses and k⊥, so it is thesame for every threshold. Taking Im[p0] & 0 for the moment, we have the trajectories of�g. 10. A trajectory lies above the kx integration path (which may be deformed or not)if Re[kx] > px/2 and below it if Re[kx] < px/2. Since these conditions do not depend onthe masses and k⊥, the trajectories lying on opposite sides of the kx integration path neverintersect, so we do not need to worry about further pinchings in the kx complex plane.It may be helpful to see what happens with the help of a sort of animation. Then we seethat, say, the points a1, b1 lying on the trajectories that approach the threshold P1 arrive�rst, while the points a2, b2 lying on the trajectories that approach P2 arrive later, as shownin �g. 11.In �gs. 10 and 11 the symbols DPi

, i = 1, 2, denote the kx integration domains thatwould squeeze ÃPi
onto the real axis if the threshold were only Pi. In the presence of boththresholds, we deform the kx integration domain into a �dynamic� domain Ddyn (i.e. afunction of p0) as follows. At a �rst stage, when a1, b1 approach P1 and a2, b2 are far away(in a neighborhood of the vertical Re[kx] = px/2), Ddyn can be taken to be DP1

. At a secondstage, when a1, b1 are far away in a neighborhood of DP1
and a2, b2 are approaching P2, wegradually deform DP1

into DP2
, starting from the vertical line towards the sides, as shownin �g. 11.What said about the trajectories displayed in �gs. 10 and 11 can be repeated for themirror trajectories obtained by re�ection with respect to the vertical line, which correspondto the case Im[p0] . 0. Deforming the kx integration domain into Ddyn as explained, no22
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Figure 11: �Animation� of trajectories in the kx complex plane in the presence of multiplethresholds with the same external momentum ppinching ever occurs in the complex kx plane as long as |Im[p0]| is su�ciently small andnonvanishing. This means that the domain deformation can be �nalized as expected, tillthe region ÃP squeezes completely onto the real axis of the complex p0 plane.If the condition (2.4) with µ → µ1, M → M1 is combined with the complex conjugateof the condition (2.4) (where the conjugation does not act on the momenta) with µ → µ2,
M → M2, then P2 and the trajectories approaching P2 are re�ected with respect to the realaxis and with respect to the vertical line Re[kx] = px/2. The conclusions reached above caneasily be extended to this case.It can also be seen that the branch points due to the square roots involved in theexpressions (2.4), (2.16) and (2.20) of Dpinch are located away from the real axis of the kxcomplex plane (if µ2

1+ k2
⊥ +M2

1 and µ2
2+k2

⊥ +M2
2 are nonvanishing, which we may assumehere). Thus, if we choose |px| large enough their branch cuts do not intersect the trajectoriesand domains described so far.Now we consider the case of two LW thresholds P1 and P2 that depend on di�erent com-binations p and q of external momenta, respectively. Again, we assume the worst scenariofor the loop momenta, which is when only one of them is involved. This situation occurs,for example, in the triangle diagram. In D = 2 we have a picture such as the one of �g. 12.We see that the two domains DP1

and DP2
may intersect in a point IA, which is anothertrue pinching. This kind of pinching also occurs in ordinary models, where it gives the so-called anomalous threshold [21]. In two dimensions the anomalous threshold of the trianglediagram is just a pole, but in higher dimensions it is a branch point. Other intersectionsthat may give anomalous thresholds are those between DP1

and the vertical line crossing
P2, as well as the intersection between DP2

and the vertical line crossing P1.Anomalous thresholds are known to appear in the diagrams that involve more than one23
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Figure 12: Multiple thresholds with di�erent external momenta p and qindependent external momentum and have been studied at length in the triangle and boxdiagrams. Basically, any time there are two external momenta p and q, or more, singularitiesof the form ∼ 1/f(p2, q2, p · q) may appear, where f(p2, q2, p · q) is a nontrivial function ofthe invariants that can be built with them. Anomalous thresholds are associated with cutsthat split the diagram in more than two parts. It is known that they do not con�ict withunitarity in ordinary models. We will see that this property extends to the Lee-Wick models.Ultimately, anomalous thresholds are sources of further complications, but do not pose newconceptual challenges.The dynamical squeezing can be achieved as follows. Consider the union DP1
∪DP2

andwrite it as D+ ∪ D−, where D+ (resp. D−) is made of the superior (inferior) portions of
DP1

and DP2
up to IA. Start from the domain D+. Consider the four trajectories k±

x (p)and k±
x (q) and take energies p0 and q0 that make them stay in neighborhoods of D+. Let

p0 and q0 grow till the trajectories approach IA. If the trajectories k±
x (q) arrive �rst andthe trajectories k±

x (p) arrive second, gradually deform D+ into the domain show in �g. 13.If k±
x (p) arrive �rst and k±

x (q) arrive second, take a domain deformation that is symmetricto the one of �g. 13 with respect to the vertical line crossing IA. The two possibilitiescorrespond to the two ways of circumventing the anomalous threshold IA. When p0 and q0grow more, it is enough to stretch the deformations just described.The arguments given so far easily extend to D > 2 and are exhaustive enough to under-stand what happens in the most general case.4 Average continuation and di�erence continuationWhen we start from the Euclidean version of the theory and perform the nonanalytic Wickrotation, we must deform the integration domain on the loop space momenta to overcome24
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Figure 13: Domain deformation in the presence of multiple thresholds with di�erent externalmomenta p and q. The grey dots are the points k±
x (p) and k±

x (q)the LW thresholds. The domain deformation, described in the previous section, is not easyto implement in general. Fortunately, there is a shortcut to avoid it, which is the averagecontinuation.In this section we formulate the average continuation and show that it solves the nonan-alytic Wick rotation and actually makes it unnecessary. Precisely, the average continuationallows us to calculate the loop integrals everywhere starting from the Euclidean region, orthe region Ã0, without even entering the other regions Ãi, i 6= 0. We also study the di�er-ence continuation, which is an elaboration of a rather familiar concept, but helps clarify theproperties of the average continuation by comparison.The average continuation and the di�erence continuation are two noticeable nonanalyticprocedures to de�ne a function of a complex variable z beyond a branch point P . Theaverage continuation has to do with fakeons and ultimately solves the Lee-Wick models.The di�erence continuation is at the root of the cut diagrams. For simplicity, let us assumethat P is located at the origin z = 0. Let f(z) denote the function we want to continue,de�ned by choosing the branch cut to be the negative real axis.Referring to �g. 14, de�ne two other functions, f+(z) and f−(z), by choosing their branchcuts on the positive and negative imaginary axes, respectively, i.e. z = iρ and z = −iρ,with ρ > 0. The average-continued function fAV(z) is de�ned as the average of f+(z) and
f−(z):

fAV(z) = 1

2
(f+(z) + f−(z)). (4.1)The imaginary axis divides the complex plane into two disjoint regions. This meansthat fAV(z) is actually a collection of two analytic functions: a superior function f>(z) =

fAV(z)|Re[z]>0 and an inferior function f<(z) = fAV(z)|Re[z]<0.25
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Figure 14: Average continuationThe di�erence continuation is instead
fd(z) = 1

2
(f+(z)− f−(z)). (4.2)Clearly, fd(z) = 0 in the half plane Re[z] > 0.Among the properties of the average and di�erence continuations, we mention that:(i) the inferior function f<(z) is uniquely determined by the superior function f>(z),albeit in a nonanalytic way;(ii) the superior function f>(z) may or may not be determined by the inferior function

f<(z);(iii) the superior function cannot be analytically continued beyond P ;(iv) it may or may not be possible to analytically continue the inferior function beyond
P . (v) if g(z) is analytic or has a pole in P and h(z) ≡ f(z)g(z), then hAV(z) = g(z)fAV(z)and fd(z) = g(z)fd(z);(vi) if f(z) is real on the positive real axis, then fAV(z) and fd(z) are, respectively, realand purely imaginary on the real axis.In the case (vi), the value of fAV(z) on the negative real axis is equal to the real part ofeither analytic continuation of f(z) to that half axis. Then we write

fAV(z) = Re[f(z)], (4.3)on the whole real axis.More generally, if f(z) has more distinct branch points on the real axis, the average anddi�erence continuations are de�ned by applying the rules listed above to each branch point26
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Figure 15: Average continuation with more branch pointsat a time. For example, let us study the average continuation with two branch points P1 and
P2. We have the situation depicted in �g. 15, which leads to three disjoint regions: the halfplane A1 = {z : Re[z] > Re[P1]}, the strip A2 = {z : Re[P2] < Re[z] < Re[P1]} and the halfplane A3 = {z : Re[z] < Re[P2]}. We come from A1, where the function is f (1)

> (z) ≡ f(z).We use the average continuation to overcome P1 and reach the strip A2, which gives theinferior function f
(1)
< (z). Then we view f

(1)
< (z) as the superior function f

(2)
> (z) for the secondstep and apply the average continuation again, to overcome P2 and go from A2 to A3. Sodoing, we obtain the new inferior function f

(2)
< (z) for A3. At the end, fAV(z) is equal to

f(z) in A1, f (1)
< (z) in A2 and f

(2)
< (z) in A3.When the branch points coincide, we must �rst deform them to make them distinct (byvarying the masses), then apply the procedure just described and, �nally, take the limitthat makes them coincide. For example, consider a diagram G made of two diagrams G1and G2 with one vertex in common. The average-continued function GAV(z) associated with

G must clearly be the product G1AV(z)G2AV(z) of the average-continued functions G1AV(z)and G2AV(z) associated with G1 and G2. However, if G1 and G2 have coinciding branchpoints, it may be tricky to satisfy this property. Consider �g. 15 again: if P1 = P2, we missthe paths shown in the second and third �gure, so we may obtain a wrong continuation.For example, if f(z) = √
z is the superior function associated with G1 = G2, then f 2(z) = zis the superior function associated with G. However, z has no branch point at all, ratherthan having two coinciding branch points, so it cannot give the correct result. Instead, ifwe replace f 2(z) with √
z
√
z − a, with a > 0, perform the average continuation and let

a tend to zero at the end, we get the correct result. The outcome is independent of the27
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deformation. Indeed, if we exchange the points P1 and P2 in �g. 15, we simply exchangethe second and third �gure, but in the limit P2 → P1 the result does not change.When a function f(z1, · · · , zn) depends on n > 1 complex variables and there is a uniquethreshold, the singularities (solutions of 1/f = 0) are generically a subspace S ⊂ Cn ofcodimension two and the branch subspaces V have codimension one, with S = ∂V. Thus,there are still two ways to analytically continue the function from C
n\V beyond S to aneighborhood A of V. Again, the average continuation is half the sum of the two.In the presence of several thresholds, we have several subspaces V. Their intersectionsgive new regions A. To reach the intersection of two subspaces V we must perform twoaverage continuations in di�erent variables. It is easy to check that the result is independentof the order of the continuations. For example, let n = 2 and Vi = {(z1, z2) : Re[zi] > 0},

i = 1, 2. Then we can reach the intersection V1 ∩ V2 either by �rst average-continuing in z1and then in z2, or vice versa, but the result does not change. The argument easily extendsto multiple intersections.We de�ne the average continuation recursively. Consider an arbitrary diagram G. De-form the masses, so that the LW thresholds (2.25) are all distinct. Let Gi1 denote the resultof the average continuation in some analytic region Ai1, already reached, with nonvanishingwidths ε. In the zeroth step, we take the result G0 of the loop integral in the main region
A0. We want to reach a new analytic region Ai2 above some LW threshold P . Rede�nethe external momenta p1, · · · , pn so that P reads p0j =

√

p2
j + M̃2 for some pj and somecombination M̃ of masses. Assume that an open-ball neighborhood UP of P belongs to Ai1,apart from the points of the half line OP with Re[p̂0j ] > 0, Im[p̂0j ] = 0 in the p0j complexplane, where p̂0j ≡ p0j −

√

p2
j + M̃2. The average-continued function in UP ∩ OP is

GAV(p0j) = lim
δ→0+

1

2

[

G(p0j + iδ) +G(p0j − iδ)
]

. (4.4)Here and below, the dependence on pj and the other external momenta is understood. Afterthe evaluation of GAV, the deformed masses are sent back to their original values and theresult found in UP ∩OP is extended to a neighborhood of OP by analytic continuation, whichde�nes the analytic regionAi2 above the threshold, as explained before. The operations (4.4)must be applied to every LW threshold.The relation between the average continuation and the nonanalytic Wick rotation canbe proved as follows. Let Ãi2 denote the region identi�ed by the condition Dpinch = 0, where
Dpinch is given by formula (2.16). The behavior of the loop integral around the pinchingsingularity inside Ãi2 is, after integrating on the loop energies by means of the residue28
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Re[p0j]τ

σ
Pσ Figure 16: Domain deformationtheorem,
∼
∫

Dk,q

∏n
i=1 d

D−1ki

∏r−1
j=1 d

D−1qj

Dpinch(p0j ,k,q) ,where Dk,q is the integration domain on the loop space momenta k and q. The denominatoris a complex function, so its vanishing amounts to two real conditions. Write
Dpinch(p0j ,k,q) = −p0j + fj(k,q)− igj(k,q),where fj and gj are real functions. When Dk,q is deformed, the region Ãi2 is deformed aswell. We have to arrange the domain deformation so as to squeeze Ãi2 onto OP . Note thatthe deformed integration domain may depend on the external momentum p, as discussed inthe previous section. We denote it by Ddef

k,q(p).Referring to �g. 16, we arrange Ddef
k,q(p) so that Ãi2 turns into half a strip Ãdef

i2
ofthickness 2σ centered in OP . The parameter σ will later tend to zero, to complete thedomain deformation and squeeze Ãdef

i2
onto OP . When the loop momenta span the domain

Ddef
k,q(p), the external momenta span the region Ãdef

i2
. We can use this map Ddef

k,q(p) → Ãdef
i2to make a change of variables such that −Re[p0j ] + fj(k,q) = τ and Im[p0j ] + gj(k,q) = ση.Then, in spacetime dimensions D greater than or equal to three, the integral gets the form

∫ ∞

−∆

dτ

∫ 1

−1

dη
h(τ, ση)

τ − iση
, (4.5)where ∆ > 0 and h is regular at τ = η = 0. We understand that the integral over theremaining variables has already been made. When σ tends to zero, we obtain

∫ ∞

−∆

dτ

∫ 1

−1

dηh(τ, 0)

(

P 1

τ
+ iπsgn(η)δ(τ)

)

= 2

∫ ∞

−∆

dτ h(τ, 0)P 1

τ
, (4.6)where P denotes the principal value and sgn is the sign function. This is the result of thenonanalytic Wick rotation.To perform the average continuation, we replace p0j by p0j + iδ, with δ real and small.Then, we �rst take σ to zero keeping |δ| > 0 (which amounts to squeezing the region Ãdef

i229
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onto OP ). At a second stage, we study the limits δ → 0+ and δ → 0−. So doing, weapproach OP from above (Im[p̂0j ] > 0, δ → 0+) and from below (Im[p̂0j ] < 0, δ → 0−). Since
|δ| is small, the integral (4.5) becomes

∫ ∞

−∆

dτ

∫ 1

−1

dη
h(τ, ση)

τ − iδ − iση
−→
σ→0

∫ ∞

−∆

dτ

∫ 1

−1

dη
h(τ, 0)

τ − iδ

−→
δ→0±

2

∫ ∞

−∆

dτ h(τ, 0)

(

P 1

τ
± iπδ(τ)

)

. (4.7)Averaging the two outcomes, we get (4.6) again. Thus, the nonanalytic Wick rotation andthe average continuation give the same results, as claimed.With multiple thresholds the conclusions are the same, as long as the threshold locationsare distinct, as emphasized before. For two thresholds located in τ1 and τ2, we have integralsof the form
∫ ∞

−∆

dτ

∫ 1

−1

dη
h(τ, ση)

(τ − τ1 − iδ1 − iση)(τ − τ2 − iδ2 − iση)
. (4.8)If τ1 6= τ2 the distributions of the form δ(τ − τ1)δ(τ − τ2) that would appear in the limits

σ → 0, δ1 → 0±, δ2 → 0±, vanish. Note that they are multiplied by a power η2, which isnot killed by the integral over η. The distributions
P 1

τ − τ1
δ(τ − τ2), P 1

τ − τ2
δ(τ − τ1),are instead killed by the integral over η (or the averages over the limits δ1 → 0± and

δ2 → 0±), so in the end we remain with
P 1

τ − τ1
P 1

τ − τ2
,both in the case of the average continuation and in the case of the nonanalytic Wick rotation.The arguments and conclusions easily extend to D = 2 once the integrals over η thatappear in formulas (4.5), (4.6), (4.7) and (4.8) are replaced by sums over the values η = −1and η = 1.We conclude this section by mentioning other integral representations of the averagecontinuation, which will be useful for the proof of perturbative unitarity. For de�niteness,we take a unique LW threshold P and assume that it is located on the real axis. We deformthe integration domain Dk,q to a D+def

k,q such that the boundary curve γ of �g. 3 is turnedinto a curve γ′ like the one of �g. 17. Then we consider the loop integral obtained byreplacing the domain Dk,q with D+def
k,q . Clearly, this integral representation allows us tomove analytically from the portion of the real axis that is located below the intersection30
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γ′
P

I

Figure 17: Average continuation combined with the domain deformationwith γ′ to an interval I of the real axis above P , without encountering LW pinchings. Let
J+ denote the result of the loop integral calculated in I following this procedure. At asecond stage, we make a mirror deformation D−def

k,q , so as to obtain a picture where γ isturned into the re�ection of γ′ with respect to the real axis. We calculate the loop integralin I and call the result J−. The integral representation of the average continuation in Iis (J+ + J−)/2. We can further deform the domains D±def
k,q so as to stretch I to the whole

OP . The construction easily generalizes to LW thresholds that are not on the real axis andto multiple LW thresholds.5 Average continuation in various dimensionsIn this section we illustrate the average continuation in examples related to typical loopintegrals.The �rst example is f(z) = ln z, with the branch cut on the negative real axis. Thefunctions f±(z) of the previous section are ln(z ± iε), so, by formula (4.1), the average-continued function turns out to be
fAV(z) = 1

2
ln z2. (5.1)The imaginary axis divides the complex plane in two disjoint regions: the half plane Re[z] >

0 and the half plane Re[z] < 0. The superior function can be determined from the inferiorfunction, but neither of the two can be analytically continued beyond z = 0. By comparison,the Feynman prescription gives ln(z − iε).The di�erence continuation gives
fd(z) = { 0 for Re[z] > 0,

iπ for Re[z] < 0,
(5.2)which may be written as iπθ(−z), where θ(z) is the complex θ function, equal to 1 for

Re[z] > 0 and 0 for Re[z] < 0. 31
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Note that the function ln z with z → −p2 is the value of the bubble diagram of amassless scalar �eld in four dimensions, apart from an overall factor and an additionalconstant. The Feynman prescription leads to ln(−p2 − iε), while the average continuationleads to fAV(−p2) = (1/2) ln(p2)2 [14]. If we squeeze the half plane Re[z] < 0 onto thenegative real axis, formula (5.2) encodes the discontinuity of the amplitude of the bubblediagram, i.e. the sum of the two cut diagrams associated with it, which is proportional to
fd(−p2) = iπθ(p2).As a second example, consider the function f(z) =

√
z. We �nd

fAV(z) = { √
z for Re[z] > 0,

0 for Re[z] < 0,
fd(z) = { 0 for Re[z] > 0,

i
√
−z for Re[z] < 0.

(5.3)Here, the superior function cannot be determined from the inferior one, which vanishes.The inferior function can be trivially continued beyond z = 0, while the superior functionobviously cannot.In three dimensions, the bubble diagram of a massless scalar does not give a logarithm,but 1/√−p2. The Feynman prescription leads to 1/
√

−p2 − iε. If we use property (v) ofsection (4) with g(z) = 1/z, f(z) = √
z and h(z) = 1/

√
z, we �nd fAV(z) = 0 for Re[z] < 0.Again, the di�erence continuation is proportional to the discontinuity of the bubble diagram.5.1 Four dimensionsIn the massive case, the bubble diagram of the standard scalar �eld in four dimensions leadsto the well-known expression

∫ 1

0

dx ln
[

−p2x(1− x) +m2 − iε
]

,after renormalizing the divergent part. This function has branch cuts in p2 = (2m)2. Switch-ing to the dimensionless variable z = p2/m2, we are lead to study the function
f(z) =

∫ 1

0

dx ln [1− zx(1 − x)] ,whose average continuation is straightforward, by formula (5.1), and gives
fAV(z) = 1

2

∫ 1

0

dx ln
[

(1− zx(1 − x))2
]

. (5.4)In �g. 18 we show the plot of this function for z real, together with the plot of the di�erencecontinuation. The �rst plot has the typical form of the LW amplitudes around the LW32
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Figure 18: Average and di�erence continuations of the massive fakeonpinching [7]. Basically, the average continuation turns the ordinary scalar �eld into a massivefakeon (see the next section for details), i.e. the massive version of the fake degree of freedomof ref. [14].Now, consider the LW propagator
1

2

(

1

p2 − iM2
+

1

p2 + iM2

)

. (5.5)The bubble diagram built with it has the LW threshold p2 = 2M2. Again, in the Euclideanregion |Re[p0]| < |p| we can evaluate the loop integral straightforwardly by means of theFeynman parameters. We have the sum of four contributions
rab(p

2/M2) =
1

4

∫

dDk

(2π)D
1

k2 − iaM2

1

(p− k)2 − ibM2
,where a, b = + or −. The functions r++ and r−− can be analytically continued to thewhole real axis, because they are not interested by LW pinchings. Renormalizing away thedivergent part, their sum is equal to −ig(p2/M2)/(8π)2, where

g(t) ≡
∫ 1

0

dx lnH(x, t), H(x, t) ≡ 1 + t2x2(1− x)2. (5.6)For p2 < 0, the sum of r+− and r−+ is −if0(p
2/M2)/(8π)2, where

f0(t) ≡
∫ 1

0

dx lnK(x, t), K(x, t) ≡ (1− 2x)2 + t2x2(1− x)2. (5.7)The function f0(t) does not give the correct result for t > 0. Indeed, it is symmetric under
t → −t and not analytic in t = 0 (which is not a LW threshold). We have to analytically33
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Figure 19: LW fakeoncontinue f0(t) from t < 0 up to the LW threshold t = 2. Then we have to average-continueit beyond the LW threshold.Observe that K(x, t) has four zeros in x, which are x = u(t), x = u∗(t), x = v(t) and
x = v∗(t), where

u(t) =
1

2
− i

t
+

i

2t

√
4− t2, v(t) =

1

2
− i

t
− i

2t

√
4− t2.We have to concentrate on the interval 0 < t < 2. We see that Im[v(t)] does not vanish,while Im[u(t)] vanishes for t = 0 and only there. In that point, u is equal to 1/2, whichbelongs to the integration path 0 < x < 1. When t grows and crosses the value 0, two zeros,

u(t) and u∗(t), cross the integration path, while the other two remain far away.It is simple to analytically continue the derivative f ′
0(t) beyond t = 0, because its in-tegrand is meromorphic. We just have to add the residues of the poles that cross theintegration path, which are equal to −2πiu′(t) and 2πiu′∗(t). When we go back to theprimitive, we obtain, on the real axis, the function

f(t) = f0(t) +
2π

t
θ(t)θ(2− t)

(√
4− t2 − 2

)

,which is indeed analytic for t < 2.At this point, it is easy to perform the average continuation above the LW threshold
t = 2. Observe that the average continuations of f0(t) and 1/t are trivial, while the averagecontinuation of the square root is zero, by formula (5.3). Thus, above the LW threshold wejust have to drop the square root. The �nal result is (on the real axis)

fAV(t) = f0(t) +
2π

t
θ(t)θ(2− t)

(√
4− t2 − 2

)

− 4π

t
θ(t− 2). (5.8)Its plot is shown in �g. 19 and is very similar to the one of the massive fakeon shown in theleft picture of �g. 18. We can call it Lee-Wick fakeon.34
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Figure 20: Four-dimensional LW fakeon: numerical results from the nonanalytic Wick rota-tion (with no domain deformation) for |p| = 1, 2, 3, withM = 1 (left picture) and M = 1/20(right picture).Repeating the arguments for the more general LW propagator
1

2

(

1

p2 − µ2 − iM2
+

1

p2 − µ2 + iM2

)

, (5.9)and focusing on r+− = r−+ (r++ and r−− still being analytic on the real axis) we get
f0(t, r)=

∫ 1

0

dx ln
[

(1− 2x)2 + (r − tx(1− x))2
]

,

f(t, r)= f0(t, r) +
2π

t
θ(t− 4r)θ(σ − t)(

√
4 + 4rt− t2 − 2),

fAV(t, r)= f(t, r)− 4π

t
θ(t− σ),where r = µ2/M2 and σ = 2

√
r2 + 1 + 2r.Finally, we study the nonanalytic Wick rotation of the Euclidean theory and compare itto the average continuation. We work with the propagator (5.5). The average continuationof the amplitude on the real axis is

MAV(p2,M2) = − 1

2(8π)2
[

fAV(p2/M2) + g(p2/M2)
]

, (5.10)where the combinatorial factor 1/2 is included.If we want to evaluate the amplitude by means of the nonanalytic Wick rotation, we haveto make the calculation inside the region ÃP of �g. 3 and deform the integration domain onthe loop space momentum as explained in section 3, till ÃP squeezes onto OP , which is theportion of the real axis from P to +∞. The procedure is involved, but there are situations35
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Figure 21: Comparison between the numerical results from the nonanalytic Wick rotation(with no domain deformation) and the result of the average continuation for M = 1/20.where the region ÃP is su�ciently thin to make the actual deformation unnecessary. Onesuch case is when the LW scale M is small. It does not even need to be so small, since inmost formulas it is raised to the forth power.A measure of the violations of analyticity and Lorentz invariance, which occur before thedomain deformation, is given by the �distance� between the point P and the point P ′ of �g.3, i.e. the di�erence between the values of p2 in such two points. Expanding the di�erencefor M small, we �nd
∼ 2M2 − 4M4

p2
. (5.11)The �rst term is Lorentz invariant, so it controls the violation of analyticity. The secondterm controls the Lorentz violation. We see that the Lorentz violation is much smaller thanthe violation of analyticity. Numerically, we should see an evident Lorentz violation for, say

|p| = 1, 2, 3, M = 1, and an approximately Lorentz invariant result already for M = 1/20,with the same values of |p|. The two situations are shown in �g. 20, which con�rms whatwe have just said. From left to right, the three plots are |p| = 3, 2 and 1. In the �rst picture,where M = 1, the plots superpose below the minimum P ′, but evidently deviate from oneanother above P ′ and P . In the second picture, which has M = 1/20, the agreement is goodeverywhere.In �g. 21 we include the prediction of the average continuation for M = 1/20, whichis the top graph. As predicted by the �rst term on the right-hand side of formula (5.11),we see a discrepancy in the interval 0 < p2 . 2M2 ∼ .005 (caused by the missing domaindeformation) and agreement everywhere else.
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5.2 Three dimensionsIn three dimensions the bubble diagram built with the propagator (5.5) gives the functions
f0(t) =

∫ 1

0

dx

(

1
√

−tx(1 − x) + i(1− 2x)
+

1
√

−tx(1 − x)− i(1− 2x)

)

,

g(t)=

∫ 1

0

dx

(

1
√

−tx(1 − x) + i
+

1
√

−tx(1 − x)− i

)

.Here it is more tricky to work with the integrands, so it is better to eliminate the Feynmanparameters by evaluating the integrals explicitly. In the Euclidean region t < 0 we �nd
f0(t) =

2i√
−t

ln

(√
2− i

√
−t√

2 + i
√
−t

)

, g(t) =
i√
−t

[

ln

(

2
√
i+

√
−t

2
√
i−

√
−t

)

+ ln

(

2
√
−i−

√
−t

2
√
−i+

√
−t

)

]

.It is important to take such functions exactly as they are written, because manipulations thatlook innocuous may actually con�ict with the determinations of the square roots and thelogarithms. We have chosen to write the formulas so that they have the correct expansionsfor t ∼ −∞.By formula (4.3), the average continuation on the real axis is just the real part, whichgives the bubble amplitude
MAV(p2,M2) =

1

64πM
Re[f0(p

2/M2) + g(p2/M2)]. (5.12)As in four dimensions, the nonanalytic Wick rotation exhibits, before the domain defor-mation, violations of analyticity and Lorentz invariance. They are apparent at M = 1, and,say, |p| = 1, 1/2, 1/3, as con�rmed by the left picture of �g. 22. By the estimate (5.11), weexpect that Lorentz invariance is quickly recovered at, say, M = 1/20, which is con�rmedby the right picture of �g. 22, where |p| = 1, 2, 3. Zooming in, it is possible to observe aslight discrepancy around p2 = 0, which is the violation of analyticity due to missing domaindeformation and estimated by the �rst term of (5.11).By applying formula (5.12), we can compare the results for M = 1/20 with the ones ofthe average continuation. This gives �g. 23. Again, we see small discrepancies between P ′and P , due to the missing domain deformation, but agreement below P ′, where no domaindeformation is required, and above P , where the e�ects of the domain deformation arenegligible.
37
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Figure 22: Three-dimensional LW fakeon: numerical results from the nonanalytic Wickrotation with no domain deformation for |p| = 1, 1/2, 1/3, M = 1 (left picture) and |p| =
1, 2, 3, M = 1/20 (right picture)5.3 Two dimensionsIn two dimensions the bubble diagram with propagators (5.5) gives, in the Euclidean region
t < 0, a result proportional to the sum f0(t) + g(t), where

f0(t) = −2t

∫ 1

0

dx
x(1 − x)

K(x, t)
, g(t) = −2t

∫ 1

0

dx
x(1 − x)

H(x, t)
.As before, the integrand of f0 has four singularities on the imaginary axis of the complex

x plane. Two of them cross the x integration path when t varies from negative to positivevalues, while the other two do not cross the integration path. Since the singularities arepoles, the di�erence f(t)− f0(t) for 0 < t < 2 can be easily calculated by summing the tworesidues, multiplied by 2πi. We �nd
f(t) = f0(t) +

4π√
4− t2

θ(t)θ(2− t).Then, fAV(t) = f(t) on the whole real axis. Indeed, we know that the average continuationof the function ∼ 1/
√
t is zero below t = 0.From the point of view of the nonanalytic Wick rotation, the two-dimensional modelsare a bit di�erent from the models in dimensions greater than or equal to three. The reasonis that in two dimensions the LW pinching occurs only at the boundary of the region ÃP of�g. 3, but not inside. The result of a loop integral in OP is Lorentz invariant and analyticeven before making the domain deformation. The only Lorentz violation we �nd in theintermediate steps is due to the fact that ÃP extends to P ′. To recover Lorentz invariance,38
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Figure 23: Three-dimensional LW fakeon: comparison between the average continuationand the nonanalytic Wick rotation with no domain deformation at M = 1/20it is su�cient to ignore the function found inside ÃP below P and analytically extend thefunction found in Ã0 from P ′ to P .We can show these facts numerically, by plotting the results of the calculations for real
p0 around the points P , P ′, with various values of |p|. In �g. 24 we see four vertical lines.The �rst three, from the left to the right, correspond to |p| = 3, 2, 1, with M = 1. Theirlocations are those of the point P ′. We see that each pair of plots agree both below thesmaller P ′ and above the larger P ′.The forth vertical line of �g. 24 corresponds to the result of the average continuation.We see that the nonanalytic Wick rotation with no domain deformation and the averagecontinuation agree both below P ′ and above P , even if M is not small with respect to |p|.In conclusion, a great simpli�cation occurs in two dimensions, where the domain de-formation is not strictly required to make calculations by means of the nonanalytic Wickrotation. At the same time, we have learned how powerful the average continuation is,because it drastically reduces the calculational e�ort in all dimensions.6 FakeonsWe have seen that the average continuation is a simple operation to overcome branch points.Then, it is natural to inquire what happens if we apply it to a physical degree of freedom.Consider for example, the bubble diagram of ordinary scalar �elds, which can be formallyobtained by letting M tend to in�nity in formula (2.2). The propagator just has the circledpoles of �g. 1. After taking ε → 0, the bubble loop integral has two branch points on thereal axis at p2 = (m1+m2)

2. The branch cuts are the half lines p2 > (m1+m2)
2 on the real39
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Figure 24: Two-dimensions: numerical results from the nonanalytic Wick rotation with nodomain deformation and comparison with the average continuationaxis. An ε di�erent from zero gives the familiar Feynman prescription, which displaces thebranch cuts a little bit from the real axis and thereby allows us to de�ne the loop integralsabove the thresholds by analytic continuation from the segment p2 < (m1 + m2)
2 to thehalf lines p2 > (m1 + m2)

2. The displacements in the bubble diagram and its conjugatediagram are symmetric with respect to the real axis. This originates the discontinuity ofthe amplitude and, ultimately, the propagating degree of freedom. After subtracting theultraviolet divergence, the diagram gives, in the massless case m1 = m2 = 0,
− i

2(4π)2
ln

−p2 − iε

µ2
, (6.1)where we have included the combinatorial factor 1/2.The average continuation can be viewed as an alternative prescription to de�ne the loopintegral above the thresholds. If we forget about ε, by setting it to zero from the start,we can still de�ne the amplitude unambiguously above the thresholds by means of formula(5.1), in which case the result becomes (for p real)

− i

4(4π)2
ln

(p2)2

µ4
. (6.2)The discontinuity is absent, so we have no propagating degree of freedom. Equivalently, wecan say that we have a fakeon, a fake degree of freedom. The average continuation makesthe physical �eld disappear from the spectrum.At the level of the Feynman rules, the fakeon prescription can be formulated as follows.40
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We replace the propagator 1/(p2 −m2) with [14]
p2 −m2

(p2 −m2)2 + E4
, (6.3)which coincides with (5.9) apart from the notation, and let E tend to zero at the very end.The limit E → 0 is regular, since it is just a prescription for the propagator.The results of this paper apply to the theories whose elementary �elds have free propa-gators that contain:(i) ordinary poles, treated by means of the Feynman prescription (with in�nitesimalwidths ε);(ii) LW poles, with �nite LW scales M ;(iii) fakeons, de�ned by means of the prescription (6.3), with in�nitesimal LW scales E .The widths ε must tend to zero �rst and the LW scales E must tend to zero last. At

E > 0 we have a LW model, because the poles of type (iii) are just like the LW polesof type (ii). In that case, we make the computations by means of the nonanalytic Wickrotation or the average continuation. The results of the next section ensure that the theoryis perturbatively unitary for ε → 0 at E > 0. If we let E tend to zero at the very end,perturbative unitarity is preseved, since it holds for every nonzero E .We can retrieve the fakeon (6.3) from the results of the previous section, by taking thelimit M → 0. For example, if we let M tend to zero in formula (5.10), we get −i times(6.2), which is correct, since for M → 0 the propagator (5.5) is the usual scalar propagator
1/p2 endowed with the fakeon prescription (6.3). In three dimensions we can take the limit
M → 0 of formula (5.12), which gives θ(−p2)/(16

√

−p2).While the LW degrees of freedom (ii) require higher derivatives and have �nite LW scales
M , the fake degrees of freedom (iii) can be introduced even without higher derivatives andhave in�nitesimal LW scales E → 0. Yet, there is not a deep di�erence between the two.In this respect, recall that the numerators of the propagators, such as the one of (6.3), arenot important in the study of the LW pinchings. From now on, we call fakeons both theLW degrees of freedom (ii) and the fake degrees of freedom (iii). We may speak of fakeonthresholds, instead of LW thresholds, fakeon scales, and so on. We call fakeon theoriesthe theories that involve fakeons (of LW type or not) besides ordinary physical degrees offreedom. Every result of this paper applies to the most general fakeon theory in dimensions
D greater than or equal to 2.Observe that if we plan to take M , or E , to zero, the nonanalytic Wick rotation simpli�esenormously, because there is no need to make the domain deformation. A quick way to seethis is provided by formula (5.11), which gives an estimate of the analyticity violations41
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and the Lorentz violations that occur prior to the domain deformation. Clearly, they bothdisappear in the limit M → 0. A more detailed argument can be provided by means offormula (2.20). Assume that we may have a LW pinching, i.e. n = n+ + n− > 0. Thepinching condition Dpinch = 0, which de�nes the regions Ãi, i 6= 0, implies
|Im[p0]| 6

n+
∑

i=1

|Im[Ω+(ki)]|+
n
∑

i=n++1

|Im[Ω−(ki)]| =
n
∑

i=1

η−(k
2
i + µ2) 6 nη−(µ

2) 6
nM√
2
.We see that the vertical sizes of the regions Ãi, i 6= 0, are bounded by nM/

√
2, which tendsto zero for M → 0. This means that all the regions Ãi, i 6= 0, squeeze onto the real axis inthat limit. Thus, the fakeons with E ,M → 0 do not need the domain deformation.7 Perturbative unitarityIn this section we derive the cutting equations and prove that the fakeon theories are per-turbatively unitary to all orders. We assume that the Lagrangian is local and Hermitian.Writing the S matrix as S = 1 + iT , the unitarity relation SS† = 1, which is equivalentto T − T † = iTT †, can be expressed diagrammatically by means of the so-called cuttingequations [9, 10, 11], which relate the discontinuities of the amplitudes to sums of �cutdiagrams�. The cut diagrams are built with the usual vertices and propagators, plus theirHermitian conjugates, as well as �cut propagators�. The cut propagators play a crucialrole, because they tell us which degrees of freedom are propagated by the theory. Precisely,they encode the key completeness relation, which allows us to derive the unitarity equation

SS† = 1 from the cutting equations. If ghosts are present, the cutting equations are stillmeaningful, but lead to a pseudounitarity equation instead of SS† = 1.We want to prove that the fakeon models admit a physical subspace V of states andunitary cutting equations. This means that, if we project the initial and �nal states |α〉, |β〉onto V , only states |n〉 belonging to V propagate through the cuts of the cutting equations.In other words, the completeness relation
1 =

∑

|n〉∈V

|n〉〈n| (7.1)holds in V , so that
|α〉, |β〉 ∈ V =⇒ 〈α|T |β〉 − 〈α|T †|β〉 = i

∑

|n〉∈V

〈α|T |n〉〈n|T †|β〉. (7.2)42
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= z = w = u = vFigure 25: ACE propagatorsObviously, we cannot demand unitarity for arbitrary complex external momenta, be-cause the physical momenta are real. Therefore, we derive cutting equations that hold ina neighborhood UR ⊂ P of the subspace of real momenta and conclude that, thanks tothem, the S matrix is unitary for real (on shell) external momenta. Note that the cuttingequations also hold o� shell.We can assume that the LW scales M are arbitrary and di�erent from zero. Onceperturbative unitarity is proved in that case, it also follows for evanescent LW scales E , aslong as they tend to zero after the widths ε.The strategy of the proof is as follows. We �rst derive more general versions of thecutting equations that hold when the external momenta belong to the Euclidean region andthe widths ε are nonvanishing. Then, we extend the validity of those equations to UR ∩ A0by analytic continuation and prove that they have the expected, unitary form in the limit
ε → 0. Third, we average-continue the generalized cutting equations of UR ∩A0 to UR ∩Ai,
i 6= 0, at ε 6= 0. Finally, we show that, in the limit ε → 0, the equations have the correctunitary form in every UR ∩ Ai.We begin by recalling an important tool that we use in the proof, i.e. the algebraiccutting equations.7.1 Algebraic cutting equationsThe algebraic cutting equations [11] are particular polynomial identities associated withFeynman diagrams. Let {σ+

i , τ
+
i , σ

−
i , τ

−
i }, i = 1, . . . N , denote N sets made of four variableseach. An abstract marking, called polarity and speci�ed by the superscripts + or −, isassigned to these variables. We say that σ+

i , τ+i (resp. σ−
i , τ−i ) are positive (negative) polarnumbers and use them to de�ne the propagators

zi = σ+
i + σ−

i , wi = τ+i + τ−i , ui = σ+
i + τ−i , vi = σ−

i + τ+i . (7.3)Consider a Feynman diagram G with I internal legs and V vertices. We may assumethat G is connected. Equip the G internal legs with orientations. We say that a curve isoriented if the orientations of all its legs are coherent. We say that a loop, i.e. a closedcurve, is minimal if it is not the union of two loops that have a vertex in common.43
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Figure 26: Oriented diagramsAssign an independent energy to each internal leg and assume that it �ows according tothe leg orientation. Then, impose the energy conservation at each vertex, with zero energieson the external legs. This leaves L = I − V + 1 independent energies e1, . . . eL. We canarrange the orientations and the energies so that the �ow of each ei de�nes an orientedminimal loop and the energy �owing in each internal leg is a linear combination of e1, . . . eLwith coe�cients 0 or 1. In this case, the diagram is said to be oriented.Build variants GM of an oriented diagram G by marking any number of vertices. Wede�ne the value PM of GM by means of the following rules. Give value 1 to each unmarkedvertex and value −1 to each marked vertex. Assign the propagators shown in �g. 25 to theinternal legs of GM, where the dots denote the marked vertices. Then, PM is the product ofthe values associated with the vertices and the propagators.The algebraic cutting equation associated with G is the polynomial identity
∑markings M

PM = PG, (7.4)where PG is a linear combination of polarized monomials. A polarized monomial is a productof polar numbers, one for each internal leg, where at least one loop γ is polarized. We saythat γ is polarized if the polar numbers associated with the legs of γ are arranged so that,moving along γ, the polarization �ips if and only if the leg orientation �ips.The main virtue of the identity (7.4) is that it isolates the terms (those collected onthe right-hand side) that do not contribute to the diagrammatic cutting equations. Indeed,in typical applications the polarity of a polar number refers to the position of its poleswith respect to the integration path on the loop energy. A polarized loop is a product ofpolar numbers whose poles are all located on the same side. Letting tadpoles and nontrivialnumerators aside, which can be treated with little additional e�ort [11], if we apply theresidue theorem to perform the integral on the energy of a polarized loop, the result is zero.To give a few examples, consider the diagrams of �g. 26. The oriented loops of the thirddiagram are 123 and 34. Instead, 124 is a nonoriented loop. Equipped with polar monomials44
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such as σ+
1 σ

+
2 τ

+
3 , σ−

3 τ
−
4 and τ+1 σ

+
2 σ

−
4 , respectively, these loops become polarized. Examplesof polarized monomials for the third diagram are σ+

1 σ
+
2 τ

+
3 σ−

4 and σ+
1 σ

+
2 σ

−
3 τ

−
4 .The polynomial identities (7.4) associated with the diagrams of �g. 26 are

z1z2 + w1w2 − u1v2 − v1u2 ∼ 0,

z1z2z3 − w1w2w3 − u1v2z3 − z1u2v3 − v1z2u3 + v1u2w3 + w1v2u3 + u1w2v3 ∼ 0,

z1z2z3z4 − w1w2w3w4 − u1v2z3z4 − v1z2u3v4 − z1u2v3u4

+v1u2w3w4 + u1w2v3u4 + w1v2u3v4 ∼ 0,where the polarized monomials on the right-hand sides have been replaced by zeros, sincein the end they do not contribute to the diagrammatic cutting equations.The algebraic cutting equations are more general than the usual diagrammatic cuttingequations that are met in physics, in the sense that no particular assumptions are madeabout the polar numbers, apart from their polarity assignments. In the usual applicationsto quantum �eld theory, zi are the ordinary propagators and wi are their complex conjugates.Moreover, ui and vi are the cut propagators, i.e. distributions of compact support, typicallytheta functions that multiply delta functions. Here it is not necessarily so. For example, weare free to keep the in�nitesimal widths ε of the Feynman prescription di�erent from zeroand arbitrary. Being able to work at ε 6= 0 is crucial to prove the perturbative unitarity ofthe fakeon models.7.2 Perturbative unitarity of the fakeon models in the EuclideanregionIn the �rst step of the proof, we concentrate on the Euclidean region, which is the regionwhere every linear combination p =
∑

i∈I pi of incoming momenta that appears in formula(2.25) satis�es |Re[p0]| < |p|. Clearly, the region is open and nonempty.We write the propagator (2.1) as σ+ + σ−, where the polar numbers σ+ and σ− are
σ±(p) = ± a

p0 ∓ ωε(p)
+

ib±

p0 ∓ Ω±(p)
− ib∓

p0 ∓ Ω∓(p)
, (7.5)with

a =
1

2ω

M4

(m2 − µ2)2 +M4
, b± =

1

4Ω±

M2

m2 − µ2 ∓ iM2
.Observe that b± = (b∓)∗, Ω± = (Ω∓)∗, ω =

√

p2 +m2 and a is real. We have replaced
m2 − iε with m2 in the coe�cients a, b±, since the limit ε → 0 is trivial there. Here andbelow the complex conjugation denoted with a ∗ does not act on the momenta.45
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z = σ+ + σ−, w = τ+ + τ−, u = σ+ + τ−, v = σ− + τ+. (7.6)Observe that the contributions of the LW poles disappear from the cut propagators u and
v, which simplify to

u =
a

p0 − ωε(p)
− a

p0 − ω∗
ε (p)

, v = − a

p0 + ωε(p)
+

a

p0 + ω∗
ε (p)

. (7.7)The limits of these expressions for ε → 0 are the cut propagators we expect (apart from anoverall factor), i.e.
u → − 2iπM4

(m2 − µ2)2 +M4
θ(p0)δ(p2 −m2), v → − 2iπM4

(m2 − µ2)2 +M4
θ(−p0)δ(p2 −m2).(7.8)These results put the physical degrees of freedom on shell and are independent of the LWpoles. It seems that perturbative unitarity may follow straightforwardly from (7.8). Unfor-tunately, this argument is too naive, for the following reason.Recall, from the previous subsection, that the notion of polarity must allow us to dropthe right-hand side of formula (7.4). Consider the positions of the poles of σ± and τ± withrespect to the integration path on p0, when the propagators appear in a loop diagram. Wesee that the poles of σ+ and τ+ are placed below the integration path, while those of σ− and

τ− are placed above the integration path. Thus, having positive (resp. negative) polaritymeans �having poles placed below (above) the integration path on the energy�. To take careof this in the relation τ± = −(σ∓)∗, we must �ip the integration path accordingly, as shownin �g. 27. The left picture of �g. 27 shows the p0 poles of σ+, which are made of a physicalpole and a LW pair, while the right picture shows the p0 poles of τ− = −(σ+)∗. If we putthe two sets of poles together, we obtain the cut propagator u, which gives �g. 28, wherethe LW poles must be further displaced till the top ones, as well as the bottom ones, come46
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m Figure 28: Poles of the cut propagator u and LW selfpinchingto coincide. Clearly, when we do this, the integration path gets pinched. We call this kindof pinching LW selfpinching, since it does not involve di�erent propagators, but the poles ofthe same (cut) propagator. A mirror picture with respect to the imaginary axis is obtainedfor v. Observe that when ε tends to zero the standard poles of the cut propagators alsopinch the integration path. We call that pinching standard selfpinching.To describe the LW selfpinching more clearly, it is convenient to start from di�erentpolar numbers, located in more usual positions, as shown in �g. 29. Speci�cally, we take

σ±(p) = ± a

p0 ∓ ωε(p)
+

ib±

p0 ∓ Ω1(p)
− ib∓

p0 ∓ Ω2(p)
, (7.9)where Ω1, Ω2 have negative imaginary parts, together with τ± = −(σ∓)∗. Now the polarnumber σ+ has three poles located in the fourth quadrant, while the polar number σ− hasthree poles located in the second quadrant. For example, making the M dependence explicitby writing Ω±(p,M) =

√

p2 +M2
±, we can set Ω1(p) = Ω−(p,M ′) and Ω2(p) = Ω−(p,M)for some real M ′ 6= M . For the arguments that follow, it may also be convenient to pick adi�erent M ′ for every propagator.If we keep the de�nitions (7.6) and take the real axis as the integration path for theenergies, we can derive the algebraic cutting equations (7.4) using the polar numbers (7.9),by applying the Feynman rules of the previous subsection. When we integrate on the loopmomenta, the right-hand side drops out, which leads to the diagrammatic cutting equations

G+ Ḡ = −
∑proper markings MGM, (7.10)where the sum is over the properly marked diagrams GM, i.e. the diagrams that containat least one marked vertex and one unmarked vertex. The diagram Ḡ is the one with allmarked vertices.We have taken nonderivative vertices, so far, but the arguments also work when thevertices are polynomials of the momenta and the free propagators have nontrivial polynomial47
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ωε

−ωε
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Ω2

−Ω1

−Ω2

Figure 29: Poles of the half propagators (7.9)numerators. We stress once again that the equations (7.10) that we obtain are more generalthan the usual cutting equations, since the widths ε do not need to be small or tend to zero,but are completely arbitrary.As long as the polar numbers are (7.9), the Wick rotation is straightforward. Then,however, the cut propagators do not simplify as in (7.7) and do not reduce to the expectedform (7.8) when ε → 0. We must migrate Ω1(p) to Ω+(p,M), which is equivalent tocomplexify M ′ and deform M ′2 continuously into −M2. During the migration, Ω1 crossesthe real axis. To keep the algebraic cutting equations valid, Ω2 cannot cross the integrationpath, since the de�nition of polarity refers to the positions of the poles in p0 with respect toit. Thus, we have to deform the integration path so as to avoid the crossing. This operation,applied on σ+, leads to the �rst picture of �g. 27. It leads to the second picture of �g. 27when it is applied to τ− = −(σ+)∗. When we apply it to the cut propagators u and v, wemust take into account that the LW pair of σ+ and the LW pair of (σ+)∗ remain on oppositesides of the integration path, which leads to �g. 28 and its re�ection with respect to theimaginary axis. This is the reason why we cannot drop the LW pairs from the di�erence
u = σ+ − (σ+)∗ so quickly. First, we have to make one LW pair cross the integration path.Once it is on the other side, it does �annihilate� the other pair. However, the crossing leavesa remnant (the contributions of a pair of residues), which must be taken into account. Toprove perturbative unitarity we need to show that such a remnant does not contribute tothe cutting equations.Observe that the crossing only concerns the cut propagators. In uncut propagators, themigration of the poles Ω1(p) just returns the right result, shown in �g. 1, and no selfpinchingoccurs. For this reason, the left-hand side of the cutting equation (7.10) goes directly to itscorrect, �nal form. Only the right-hand side needs a detailed analysis.Consider a properly marked diagramGM. Assume that the cut propagators are n+1 and48
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depend on n loop momenta (the most general case being a straightforward generalization ofthis one). Each cut propagator u = σ+ + τ− and v = σ− + τ+ receives contributions fromLW selfpinchings and standard selfpinchings. We decompose GM as a sum of terms whereeach cut propagator involves either of the two. We analyze such terms one by one, startingfrom the terms that involve only LW selfpinchings.Integrate on the n loop energies k0
i by means of the residue theorem and takeM ′2 → −M2in n cut propagators. This operations give n conditions of the form k0

i = ω̃i(ki), whicheliminate the loop energies k0
i . At this point, the contribution of the LW selfpinching duethe last cut propagator has the form

1

D+pinch − 1

D−pinch , (7.11)where D±pinch are deformed versions of the denominators Dpinch of equation (2.16). Thedeformations depend onM ′ and are such thatD±pinch → Dpinch whenM ′2 → −M2. Moreover,they make D±pinch vanish on opposite sides of the integration path.After the integrations on k0
i , the integration path has actually disappeared, so formula(7.11) can be read as it stands. When we �nalize the migration of Ω−(p,M ′) into Ω+(p,M)by taking the limit M ′2 → −M2, the di�erence (7.11) gives zero, because we are workingin the Euclidean region, where the loop space momenta are integrated on their natural realdomains and the condition Dpinch = 0 has no solutions. We recall that, indeed, Dpinch = 0is the condition for having a LW pinching, which de�nes the regions Ãi, i 6= 0.Now, consider the terms where only standard selfpinchings occur. Those are the expectedterms, the only ones that should survive at the very end. Indeed, the di�erences (7.11) give(7.7) in this case.Finally, consider the mixed selfpinching, i.e. the terms where the contributions of somecut propagators come from LW selfpinchings and those of other cut propagators come fromstandard selfpinchings. Recall that the LW selfpinching occurs when we complete the migra-tion of Ω−(p,M ′) into Ω+(p,M) by taking M ′2 → −M2. Instead, the standard selfpinchingoccurs when we take ε → 0. If we are willing to let the widths ε disappear at the end, theargument used for the terms with only LW selfpinchings can be applied with straightforwardmodi�cations and leads to the conclusion that the contributions of the mixed selfpinchingsvanish in the limit ε → 0. For various arguments that follow, however, it is necessary to keep

ε 6= 0. There, we have generalized cutting equations that contain extra contributions, whichmust be taken into account for the extension of the proof beyond the Euclidean region. Forexample, consider the case where the contributions of the �rst n cut propagators come fromLW selfpinchings and those of the last cut propagator come from a standard selfpinching49
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with mass m. We integrate on the n loop energies as before and complete the migrations
M ′2 → −M2. At the last step, we obtain an integrand proportional to an expression of theform (7.11), where the denominators D±pinch are equal to (2.20) with r = 1 and imaginaryparts ∓iε attached to the squared mass m2. Clearly, (7.11) does not vanish in this case untilwe take ε → 0.Summarizing, the expected, unitary cutting equations hold in the Euclidean region for
ε → 0. The cut propagators can be e�ectively replaced by (7.8) in that limit and theLW degrees of freedom do not propagate through the cuts. Moreover, generalized cuttingequations hold at ε 6= 0.7.3 Perturbative unitarity in the other regionsThe next step is to extend the validity of the generalized cutting equations by analyticcontinuation from the Euclidean region to the intersection UR ∩A0. Then we have to reachthe other regions UR ∩ Ai, i 6= 0, by means of the average continuation. In both cases, wemust prove that the generalized cutting equations reduce to the expected, unitary cuttingequations in the limit ε → 0. We assume that the masses are arranged so that the LWthresholds are all distinct.We have seen that the generalized cutting equations in the Euclidean region have cor-rections C(p, ε) for ε 6= 0, due the mixed selfpinchings, where p are the incoming externalmomenta. The reason why they vanish for ε → 0 is that Dpinch never vanishes in theEuclidean region.The �rst extension away from the Euclidean region is straightforward. At ε 6= 0 thestandard branch points are displaced from the real axis. Moreoveor, we know that we candeform the integration domain on the loop space momenta so as to avoid the LW pinchingseverywhere in A0. Once we do that, we can analytically continue the generalized cuttingequation (7.10) from the Euclidean region to UR∩A0 by keeping ε 6= 0 and moving along thereal axis. Then, the corrections C(p, ε) still vanish when we take the limit ε → 0, because
Dpinch never vanishes.When we attempt to analytically continue the cutting equation (7.10) above an LWthreshold P , we �nd that it cannot be done in a unique way. Averaging the two independentways of doing it, we can prove perturbative unitarity in the regions UR ∩ Ai, i 6= 0.Speci�cally, we make the two domain deformations Dk,q → D+def

k,q and Dk,q → D−def
k,qexplained at the end of section 4. Applying the deformations on the entire cutting equation(7.10), we obtain two deformed versions of it.In the case of the deformation Dk,q → D+def

k,q , we denote the deformed versions of the50
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diagrams G, Ḡ and GM by J+, J̄ + and J+M, respectively. In the case of the deformation
Dk,q → D−def

k,q , we denote them by J−, J̄ − and J−M. In each case, we obtain an integralrepresentation of the cutting equation (7.10) in some interval I of the real axis above P andwe can reach I by analytic continuation from the Euclidean region without encounteringLW pinchings. Since Dpinch never vanishes in I, the corrections C(p, ε) still vanish for ε → 0.Note that the left-hand sides J± + J̄ ± of the deformed cutting equations are no longerreal, because the integral representations of J± and J̄ ± have the same (complex) deformeddomains D±def
k,q . By construction we have J̄ ± = (J∓)

∗.When we average the two deformed cutting equations, we obtain the cutting equationthat holds above the LW threshold. The average of the left-hand sides gives
1

2
(J+ + J̄ +) +

1

2
(J− + J̄ −) =

1

2
(J+ + J−) +

1

2
(J̄ + + J̄ −),where (J+ + J−)/2 is the average continuation of G and (J̄ + + J̄ −)/2 is the averagecontinuation of Ḡ. The average of the right-hand sides has the expected form for ε → 0,since the contributions C(p, ε) drop out in that limit.The conclusion holds in the neighborhood of every I ⊂ UR ∩ Ai, so it also holds in thewhole UR ∩ Ai. Applying this procedure to each LW threshold at a time, we reach every

UR ∩Ai, i 6= 0. When anomalous thresholds are met, there are multiple ways to circumventthem, which correspond to multiple options for the deformations, as described at the end ofsection 3. Each option can be used to average-continue the cutting equations as describedabove. The corrections C(p, ε) vanish for ε → 0 in every case.In the end, the cutting equations have the expected unitary form in all the regions Aifor ε → 0. This concludes the proof that the fakeon models are perturbatively unitary to allorders. Note that it would be much more di�cult to make the extension to Ai, i 6= 0, usingthe nonanalytic Wick rotation. This shows once more the power of the average continuation,a very simple operation that allows us to make a number of manipulations that otherwisewould be very cumbersome.7.4 RemarksBefore concluding this section, we comment on the resummation of the perturbative seriesand its e�ects on the unitarity equation SS† = 1. We recall that the LW poles of the freepropagators (2.1) are located symmetrically with respect to the real axis. This is importantfor the proof of perturbative unitarity, because the contributions of complex conjugate LWpoles compensate each other. However, the exact two-point functions may lose the symmetry51
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just mentioned, because the resummations may give widths to the standard poles and the LWpoles, and change their masses. This is no source of concern, because that symmetry, whichis helpful to see unitarity at the perturbative level, plays no role after the resummations.Once we have derived the diagrammatic cutting equations (7.10) and projected theexternal states onto V , we have the completeness relation (7.1) and the unitarity equations(7.2). At a �rst stage, let us ignore the resummations that a�ect the standard poles andconcentrate on those that a�ect the LW poles. Then the states of V stay the same andthe unitarity equations (7.2) remain valid. These types of resummations just act internallyto the correlation functions associated with 〈α|T |β〉, 〈α|T †|β〉, 〈α|T |n〉 and 〈n|T †|β〉. At asecond stage, we perform the resummations that a�ect the standard poles. Some physicalparticles may acquire widths and decay, and so disappear from the physical spectrum at verylarge distances. Since they still propagate through the cuts of the cutting equations, the Smatrix is no longer unitary in a strict sense, although it remains perturbatively unitary.In other words, when we resum the perturbative expansion, the LW sector does not a�ectunitarity. Yet, some physical poles may get nonvanishing widths, pretty much like the muonin the standard model. In this respect, the fakeon models behave as an ordinary model.If the Lagrangian is Hermitean, the results of the next section ensure that its renormal-ization is also Hermitean, so the denominators of the renormalized propagators obtained byincluding the counterterms still have the structure displayed in formula (2.1), with pairs ofcomplex conjugate poles, besides the physical poles.8 RenormalizabilityCommonly, higher-derivative theories are thought to have an enhanced power counting,because the propagators fall o� more rapidly at high energies. However, the usual rules ofpower counting just work in Euclidean space, while in Minkowski spacetime it is much moredi�cult to have control on the ultraviolet behaviors of the Feynman diagrams. Everythingis �ne if the Minkowski formulation of the theory is analytically equivalent to the Wickrotated Euclidean one, which happens for example when the free propagators just havepoles on the real axis. A fakeon model does not have this property, to the extent that theMinkowski version is plagued by nonlocal, non-Hermitian counterterms [19]. At the sametime, we know that the Wick rotation of the Euclidean version of a fakeon model is notanalytic everywhere, so we have reasons to worry that the nice renormalizability propertiesof the Euclidean version may not be fully inherited by the nonanalytically Wick rotatedtheory. 52



18A1Renor
m

In this section we overcome these worries, by proving that the renormalization of a fakeonmodel is still local and actually coincides with the one of its Euclidean version. We give twoarguments, the �rst one based on the average continuation and the second one based on thenonanalytic Wick rotation.The �rst argument is straightforward. Once we have subtracted the divergences of theEuclidean theory, the amplitudes are convergent in the Euclidean region. We know thatwe can unambiguously reach every other region from there. The analytic continuation of aconvergent function is obviously convergent. The same holds for the average continuation,which is made of two analytic continuations. This implies that the amplitudes are fullyconvergent in every analytic region Ai.The second argument requires a bit more work. The rules of power counting of theEuclidean theory trivially extend from the Euclidean region to the main region A0, sincethe Wick rotation is analytic there. So, we just need to concentrate on the other regions
Ai, i 6= 0. Let us start from the regions Ãi, i 6= 0, which are de�ned as the solutions of theconditions Dpinch = 0 with real loop space momenta, Dpinch being given by (2.20). As weknow, the relative sign in front of the frequencies of (2.20) is necessarily positive, otherwiseno pinching occurs. Assume that the external momenta p belong to a compact connectedopen subset Sp ⊂ P that contains an open subset of the Euclidean region. Formula (2.20)makes it clear that the condition Dpinch = 0 cannot be satis�ed in Sp for arbitrarily large
|ki| and |qj|. Thus, the solution identi�es a compact subset Ck,q of the domain Dk,q of theloop space momenta.Recall that the loop energies k0

i are gone after applying the residue theorem. Split theintegral on Dk,q as the sum of the integral on a compact subset C′
k,q ⊃ Ck,q plus the integralon Dk,q\C′

k,q. Clearly, the integral on C′
k,q is not interested by ultraviolet divergences.On the other hand, the integral on Dk,q\C′

k,q may be ultraviolet divergent, but it is notinterested by the LW pinching. This means that it admits an analytic Wick rotation, whichmakes its ultraviolet divergences equal to those of its Euclidean version. Observe thatthe Euclidean loop integral is reachable analytically while remaining inside Sp, since Spis chosen to contain an open subset of the Euclidean region. Thus, once the (Euclidean)divergences and subdivergences are subtracted, the loop integral is convergent in Sp. Since
Sp is arbitrary, the subtracted integral is convergent everywhere in P.So far, the integration domain Dk,q is still undeformed, because we have been working inthe regions Ãi. Now we have to perform the domain deformation to go from the regions Ãi tothe regions Ai. We can make it so that the deformed Ck,q remains always compact. Applyingthe argument above to every deformed Dk,q, we see that the �nal result is convergent in53
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every region Ai.We conclude that the nonanalyticity of the Wick rotation does not con�ict with therenormalization of the fakeon models, which coincides with the renormalization of theirEuclidean versions. In particular, the locality of counterterms and the usual rules of powercounting hold. This proves that the fakeon models that are renormalizable do reconcileunitarity and renormalizability.9 ConclusionsIn this paper we have studied the fakeon models, which contain ordinary physical particlesand fakeons, i.e. fake degrees of freedom. An important subclass are the Lee-Wick models,which have higher derivatives. Fakeons can also be introduced without higher derivatives,by means of a suitable quantization prescription.Formulating the models by nonanalytically Wick rotating their Euclidean versions, wehave shown that they are consistent to all orders. In particular, we have studied the LWpinching and the domain deformation in arbitrary diagrams.The S matrix of the fakeon models is regionwise analytic. Di�erent analytic regions
Ai are related by the average continuation, a powerful operation that allows us to simplifynumerous derivations. The average continuations of various functions that are frequentlymet in four, three and two dimensions have been computed and compared numerically tothe results of the nonanalytic Wick rotation, con�rming that the two operations give thesame result.We have proved that the fakeon models are perturbatively unitary to all orders. Thestrategy of the proof was to �rst use the algebraic cutting equations to derive generalizedversions of the diagrammatic cutting equations that hold in the Euclidean region at ε 6= 0.Then we have shown that the equations can be analytically continued to the main analyticregion A0 and average-continued to the other analytic regions Ai, i 6= 0. Finally, we haveproved that they reduce to the expected, unitary cutting equations when the widths ε tendto zero.Another good property of the fakeon models is that they have the same renormalizationas their Euclidean versions have. This makes them viable candidates to explain quantumgravity. We recall that while the LW models of quantum gravity [18, 14] are superrenormal-izable, the fakeon models of quantum gravity can be strictly renormalizable [14]. At present,the best candidate to explain quantum gravity is a fakeon theory in four dimensions whoseLagrangian density contains the Hilbert-Einstein term R, the cosmological term and the54
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terms RµνR
µν , R2 [14]. It is the unique model whose gauge coupling is dimensionless. Ithas all the features we expect apart from one: a nonvanishing cosmological constant, whichmay predict a small unitarity anomaly in the universe. The classical action of this theorycoincides with the one considered in refs. [13] and more recently refs. [22], but its quanti-zation and physical predictions are completely di�erent, because the would-be ghosts havebeen replaced by the fakeons. Strictly unitary superrenormalizable models can also be built[14], but their features makes them less realistic. In the end, the fakeon models have all thefeatures that we require to include them into the set of the physically acceptable theories.AcknowledgmentsWe are grateful to U. Aglietti, L. Bracci and M. Piva for helpful discussions.References[1] T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl.Phys. B 9 (1969) 209.[2] T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2(1970) 1033.[3] R.E. Cutkosky, P.V. Landsho�, D.I. Olive, and J.C. Polkinghorne, A non-analytic S-matrix, Nucl. Phys. B 12 (1969) 281.[4] T.D. Lee, A relativistic complex pole model with inde�nite metric, in Quanta: Essaysin Theoretical Physics Dedicated to Gregor Wentzel (Chicago University Press, Chicago,1970), p. 260.[5] N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic �eld theory, Phys.Rev. D 3, 811 (1971).[6] B. Grinstein, D. O'Connell and M.B. Wise, Causality as an emergent macroscopicphenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 andarXiv:0805.2156 [hep-th].[7] D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum �eld theory, J. HighEnergy Phys. 06 (2017) 066, 17A1 Renormalization.com and arXiv:1703.04584 [hep-th].[8] D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick models, Phys. Rev. D 96(2017) 045009, 17A2 Renormalization.com and arXiv:1703.05563 [hep-th].55

http://arxiv.org/abs/0805.2156
http://renormalization.com/17a1/
http://arxiv.org/abs/1703.04584
http://renormalization.com/17a2/
http://arxiv.org/abs/1703.05563


18A1Renor
m

[9] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.(NY) 1 (1960) 429;M. Veltman, Unitarity and causality in a renormalizable �eld theory with unstableparticles, Physica 29 (1963) 186.[10] D. Anselmi, Aspects of perturbative unitarity, Phys. Rev. D 94 (2016) 025028,16A1 Renormalization.com and arXiv:1606.06348 [hep-th].[11] D. Anselmi, Algebraic cutting equations, 16A3 Renormalization.com andarXiv:1612.07148 [hep-th].[12] G. 't Hooft, Renormalization of massless Yang-Mills �elds, Nucl. Phys. B 33 (1971)173;G. 't Hooft, Renormalizable Lagrangians for massive Yang-Mills �elds, Nucl. Phys. B35 (1971) 167.[13] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16(1977) 953;J. Julve, M. Tonin, �Quantum gravity with higher derivative terms,� Nuovo Cim. B 46(1978) 137;E.S. Fradkin, A.A. Tseytlin, �Renormalizable asymptotically free quantum theory ofgravity,� Nucl. Phys. B 201 (1982) 469;I. G. Avramidi and A. O. Barvinsky, �Asymptotic freedom in higher derivative quantumgravity,� Phys. Lett. B 159 (1985) 269.[14] D. Anselmi, On the quantum �eld theory of the gravitational interactions, J. HighEnergy Phys. 06 (2017) 086, 17A3 Renormalization.com and arXiv:1704.07728 [hep-th].[15] B. Grinstein, D. O'Connell, and M.B. Wise, The Lee-Wick standard model, Phys. Rev.D77 (2008) 025012 and arXiv:0704.1845 [hep-ph];C.D. Carone and R.F. Lebed, Minimal Lee-Wick extension of the standard model,Phys. Lett. B668 (2008) 221 and arXiv:0806.4555 [hep-ph];J.R. Espinosa and B. Grinstein, Ultraviolet properties of the Higgs sector in the Lee-Wick standard model, Phys. Rev. D83 (2011) 075019 and arXiv:1101.5538 [hep-ph];56

http://renormalization.com/16a1/
http://arxiv.org/abs/1606.06348
http://renormalization.com/16a3/
http://arxiv.org/abs/1612.07148
http://renormalization.com/17a3/
http://arxiv.org/abs/1704.07728
http://arxiv.org/abs/0704.1845
http://arxiv.org/abs/0806.4555
http://arxiv.org/abs/1101.5538


18A1Renor
m

C.D. Carone and R.F. Lebed, A higher-derivative Lee-Wick standard model, JHEP0901 (2009) 043 and arXiv:0811.4150 [hep-ph].[16] B. Grinstein and D. O'Connell, One-Loop Renormalization of Lee-Wick Gauge Theory,Phys. Rev. D78 (2008) 105005 and arXiv:0801.4034 [hep-ph];C. D. Carone, Higher-derivative Lee-Wick uni�cation, Phys. Lett. B677 (2009) 306,and arXiv:0904.2359 [hep-ph].[17] E. Tomboulis, 1/N expansion and renormalization in quantum gravity, Phys. Lett. B70 (1977) 361;E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity, Phys.Lett. B 97 (1980) 77.[18] Shapiro and L. Modesto, Superrenormalizable quantum gravity with complex ghosts,Phys. Lett. B755 (2016) 279-284 and arXiv:1512.07600 [hep-th];L. Modesto, Super-renormalizable or �nite Lee�Wick quantum gravity, Nucl. Phys.B909 (2016) 584 and arXiv:1602.02421 [hep-th].[19] U.G. Aglietti and D. Anselmi, Inconsistency of Minkowski higher-derivative theories,Eur. Phys. J. C 77 (2017) 84, 16A2 Renormalization.com and arXiv:1612.06510 [hep-th].[20] F. Bloch and A. Nordsieck, Note on the radiation �eld of the electron, Phys. Rev. 52(1937) 54;T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650;T. D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev.133 (1964) B1549;S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.[21] For details, see R.J. Eden, P.V. Landsho�, D.I. Olive and J.C. Polkinghorne, TheAnalytic S-Matrix, Cambridge University Press, Cambridge, UK, 1966.[22] A. Salvio and A. Strumia, Agravity up to in�nite energy, Eur. Phys. C 78 (2018) 124and arXiv:1705.03896 [hep-th];A. Salvio and A. Strumia, Agravity, J. High Energ. Phys. 06 (2014) 80 andarXiv:1403.4226 [hep-ph]. 57

http://arxiv.org/abs/0811.4150
http://arxiv.org/abs/0801.4034
http://arxiv.org/abs/0904.2359
http://arxiv.org/abs/1512.07600
http://arxiv.org/abs/1602.02421
http://renormalization.com/16a2/
http://arxiv.org/abs/1612.06510
http://arxiv.org/abs/1705.03896
http://arxiv.org/abs/1403.4226

	Introduction
	Lee-Wick models
	LW pinching beyond one loop

	The domain deformation
	Domain deformation in the bubble diagram
	Domain deformation in more complicated diagrams

	Average continuation and difference continuation
	Average continuation in various dimensions
	Four dimensions
	Three dimensions
	Two dimensions

	Fakeons
	Perturbative unitarity
	Algebraic cutting equations
	Perturbative unitarity of the fakeon models in the Euclidean region
	Perturbative unitarity in the other regions
	Remarks

	Renormalizability
	Conclusions

