
17A2Renor
m
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AbstractWe study the perturbative unitarity of the Lee-Wick models, formulated as nonanalyticallyWick rotated Euclidean theories. The complex energy plane is divided into disconnected re-gions and the values of a loop integral in the various regions are related to one another bya nonanalytic procedure. We show that the one-loop diagrams satisfy the expected, unitarycutting equations in each region: only the physical degrees of freedom propagate through thecuts. The goal can be achieved by working in suitable subsets of each region and proving thatthe cutting equations can be analytically continued as a whole. We make explicit calculationsin the cases of the bubble and triangle diagrams and address the generality of our approach.We also show that the same higher-derivative models violate unitarity if they are formulateddirectly in Minkowski spacetime.
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1 IntroductionThe nonrenormalizability of the Hilbert-Einstein Lagrangian [1] teaches us that, if we wantto solve the problem of quantum gravity, we have to explore new sectors of quantum �eldtheory and maybe relax some assumptions we are accustomed to. In this respect, an interestingsubsector of quantum �eld theory is represented by the local, higher-derivative theories, becausethere is still a possibility that the search for a consistent theory of quantum gravity might leadthere.However, the formulation of higher-derivative theories turns out to be less trivial thanexpected. For example, when the free propagators have complex poles, the theories cannot beconsistently de�ned in Minkowski spacetime [2], in general, because they generate nonlocal,non-Hermitian divergences, which cannot be subtracted away without destroying the nature ofthe theory itself.The Lee-Wick (LW) models [3] are a special subclass of local, higher-derivative theories,which have the possibility of reconciling renormalizability and unitarity. The propagatorscontain complex conjugate pairs of extra poles, which we call LW poles, besides the polescorresponding to the physical degrees of freedom and the degrees of freedom introduced by thegauge �xing (which are those propagated by the temporal and the longitudinal components ofthe gauge �elds, as well as the Faddeev-Popov ghosts). The Lee-Wick models are claimed tolead to a perturbatively unitary S matrix [3, 4, 5]. Because of their unusual features, theirformulation has been the object of several investigations. Like all higher-derivative theories,they violate microcausality. Nakanishi [6] showed that if the loop space momenta are integratedon their natural, real values, as Lee initially seemed to suggest [7], Lorentz invariance is violated.Cutkosky et al. (CLOP) showed [5] that the S matrix is not analytic when pairs of LW polespinch the integration path of the energy. They proposed to treat such a pinching, which we callLW pinching, by means of a limiting procedure, known as CLOP prescription. Among otherthings, the CLOP prescription removes the problems found by Nakanishi. In simple diagrams,it gives an unambiguous, Lorentz invariant and unitary result, as con�rmed by the calculationsof Grinstein et al. [8]. However, it seems a bit arti�cial, since it cannot be incorporated into aLagrangian and ambiguities are still present. For a while it was thought that such ambiguitiessurvived only at high orders diagrams [5], but recently it has been shown that they are presentalso at one loop [9].These pieces of information need to be clari�ed and properly assessed. To answer some ofthe open questions, a new formulation of the Lee-Wick models has been recently proposed [9],by viewing them as nonanalytically Wick rotated Euclidean higher-derivative theories.Since the Minkowski formulation is not viable [2], we have no choice but start from the2
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Euclidean version of the higher-derivative theories. However, the Wick rotation turns out tobe nonanalytic, because of the LW pinching, to the extent that the complex energy plane isdivided into disjoint regions Ai of analyticity. The Lorentz violation is avoided by workingin a generic Lorentz frame, with generic external momenta, and deforming the integrationdomain of the space loop momenta to complex values in a suitable way. It turns out that themodels are intrinsically equipped with all that is necessary to de�ne them properly. There isno need of the CLOP prescription, or any other prescription, to handle the pinching of the LWpoles. Moreover, the CLOP prescription leads to physical results that are ambiguous, even ina simple case such as the bubble diagram with di�erent physical masses [9]. Therefore, the adhoc prescriptions should be dropped.Because the Lee-Wick models have been reformulated anew, and the new formulation leadsto predictions that are quantitatively di�erent from those of the previous approaches, it iscompulsory to investigate perturbative unitarity in the new formulation. Writing the S matrixas S = 1+ iT , the unitarity relation SS† = 1 is equivalent to T −T † = iTT †. This identity canbe expressed diagrammatically by means of the so-called cutting equations [10], which relatethe discontinuity of an amplitude to the sum of cut diagrams (see also [11] for a recent extensionand [12] for an algebraic reformulation). The cut diagrams are built with cut propagators andshadowed vertices, in addition to the usual propagators and vertices. In this paper, we studythe cutting equations in the one-loop bubble and triangle diagrams explicitly, but the procedurecan be extended to all the one-loop diagrams.The cutting equations must be derived within the formulation of the models as nonana-lytically Wick rotated Euclidean theories. To achieve this goal, we show that it is possibleto derive the cutting equations in suitable subsets Oi of the analytic regions Ai and extendtheir validity to the whole Ai by analytic continuation. The analytic continuation of the cutdiagrams is something that also requires some attention, because it is not discussed in theavailable literature.The results we �nd con�rm that the cutting equations of the LW models are consistent withperturbative unitarity. The contributions of the poles of each LW pair mutually cancel, so onlythe physical degrees of freedom propagate through the cuts.Our �ndings also suggest that the cancellation mechanism, which is encoded in formula(5.6), is a general property of all diagrams. While the bubble diagram is too special to argue infavor of general properties, the derivation of the cutting equations for the triangle diagram issu�ciently general to be applied to all the one-loop diagrams. The generalization to diagramswith more loop is less direct, but it appears to be mostly a technical matter, which is why webelieve that our results can be the starting point to derive a proof of perturbative unitarity toall orders. 3
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Finally, to emphasize the importance of the nonanalytic Wick rotation, we show that thesame higher-derivative models do violate unitarity when they are de�ned directly in Minkowskispacetime.The LW models are important not only theoretically, but also because they may havephenomenological applications. Among those that have been considered in the literature, wemention extensions of QED [4], physics beyond the standard model [13] and grand uni�edtheories [14], as well as the search for a consistent theory of quantum gravity [15, 16]. In ref. [9]it was also noted that the unusual behaviors of the physical amplitudes, due to the violationsof analyticity, may have important phenomenological consequences, for example allow us tomeasure some key physical constants of the LW models, such as the scales associated with thehigher-derivative terms.The paper is organized as follows. In section 2 we recall the formulation of the models. Insection 3 we study the analytic continuation of the cut diagrams. In section 4 we reconsiderthe bubble diagram in standard theories and derive its cutting equations in a setting that issu�ciently general to ease out the extension to the LW models. In section 5, we derive thecutting equations of the bubble diagram in the LW models and show that only the physicaldegrees of freedom propagate through the cuts. In section 6, we do the same for the trianglediagram. In section 7, we extend our results to Feynman diagrams with nontrivial numeratorsand comments on the validity of our arguments in arbitrary diagrams. In section 8, we showthat the higher-derivative theories of the LW class, if de�ned directly in Minkowski spacetime,do violate unitarity. Section 9 contains our conclusions.2 Lee-Wick models as nonanalytically Wick rotated Eu-clidean theoriesIn this section we recall how the LW models are formulated as nonanalytically Wick rotatedEuclidean theories [9]. For concreteness, it may be useful to have a speci�c theory in mind,such as the massive Lee-Wick ϕ4 theory in four dimensions described by the Lagrangian
L =

1
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ϕ4, (2.1)whose free propagator reads in momentum space

iD(p2, m2, ε) =
iM4

(p2 −m2 + iε)((p2)2 +M4)
. (2.2)More general propagators and more diverse theories can be considered, but they do not changethe sense of the discussion that follows. In the limit M → ∞, (2.2) returns the standard4
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Re[p0]

Im[p0]

Figure 1: Integration path given by the Wick rotationpropagator, while at M < ∞ extra poles, which we call LW poles, are present besides thestandard ones. The LW poles come in complex conjugate pairs, which we call LW pairs.The Wick rotation is simple for a single propagator. When the imaginary axis is rotatedto the real one, we get the integration path of �g. 1, where the encircled crosses denotethe standard poles and the non encircled crosses denote the LW poles. In generic Feynmandiagrams, where more propagators are present, the Wick rotation is less trivial. Let us consider,for example, the bubble diagram, �g. 2. The loop integral is proportional to
J(p) =

∫

dDk

(2π)D
D(k2, m2

1, ε1)D((p− k)2, m2
2, ε2). (2.3)For the sake of generality, we take di�erent masses m1, m2 and di�erent in�nitesimal widths

ε1, ε2. When we vary the external momentum p, the poles of the �rst propagator are �xed,while those of the second propagator move on the complex k0 plane. Assuming for simplicitythat the external space momentum p vanishes and taking p0 real, the Wick rotation gives theintegration path of �g. 3.We see that the left LW pair of a propagator is always above the integration path, while theright LW pair is always below. This property holds in arbitrary diagrams. A pinching, which
Figure 2: Bubble diagram5
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Figure 3: Integration path of the bubble diagramwe call LW pinching, occurs when the left (right) LW pair of the �rst propagator hits the right(left) LW pair of the second propagator. The threshold of this pinching is p2 = 2M2. Withcomplex p0, other types of LW pinchings occur: the bottom LW pole of the left LW pair of the�rst propagator can hit the top LW pole of the right LW pair of the second propagator, and soon. The thresholds of these pinchings are p2 = ±4iM2. Several such situations are symmetricto one another, so it su�ces to study a single representative of each symmetric subset.The threshold associated with a LW pinching will be called LW threshold. We anticipatethat the LW thresholds are not associated with discontinuities of the amplitudes, in agreementwith unitarity. However, they are associated with nonanalytic behaviors of the amplitudes.We focus on the pure LW pinching, which involves two LW poles, because at one loop itis the only LW pinching that has thresholds on the real axis. The mixed LW pinching, whichoccurs between a LW pole and a standard pole, needs complex external momenta p and itsthresholds are far away from the real axis.
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Figure 4: LW thresholds and LW branch cuts at p = 06
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Figure 5: Areas of LW pinching at p 6= 0To evaluate J(p), we �rst integrate over the loop energy k0 by means of the residue theorem,after which we remain with the integral on the loop space momentum k. At p = 0, if we keepthe k integration domain rigid, i.e. integrate k on its natural, real values, the positions of theLW thresholds and the LW branch cuts as functions of the external (complex) energy p0 arethose shown in �g. 4, plus their re�ections with respect to the imaginary axis. In particular,the branch cut on the real axis is made by the solutions of the pinching condition
p0 =

√
k2 + iM2 +

√
k2 − iM2.When p0 crosses one of the curves shown there, a pole of the integrand crosses the k integrationdomain. The cuts can be analytically deformed by deforming the k integration domain beforeit is crossed by the pole, so as to prevent the crossing from actually occurring.Something interesting happens at nonvanishing, real p. Keeping the k integration domainrigid again, we �nd that each cut of �gure 4 enlarges into the regions Ãi shown in �g. 5.We denote the main region, i.e. the one that contains the imaginary axis, by Ã0. There, theWick rotation is analytic, because no LW pinching occurs. The curve γ is the boundary ofa di�erent region, which we denote by ÃP , which contains the positive real axis above thethreshold p2 = 2M2, located in the point P . The points of ÃP are the solutions of the pinchingcondition

p0 =
√
k2 + iM2 +

√

(k− p)2 − iM2. (2.4)Note that γ does not intersect the real axis in P , but in another point P ′, located below thethreshold. Working out the coordinates of P and P ′, we �nd
P : p0 =

√

2M2 + p2 ≡ EP , P ′ : p0 =

√

p2

2
+

√

(p2)2

4
+ 4M4 ≡ EP ′, (2.5)7
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which satisfy √
2M < EP ′ < EP , EP − EP ′ <

√
2M .Since the location of P ′ has no Lorentz invariant meaning, Lorentz invariance appearsto be violated. Recall that �g. 5 is derived by keeping the loop space momentum k real.However, the integration path of �g. 1 shows that the loop energy is not everywhere real, soLorentz invariance implies the loop momentum cannot be everywhere real. To recover Lorentzinvariance, the k integration domain must be deformed to include complex values. Moreover,the deformation must turn the surfaces of �g. 5 into Lorentz invariant lines (i.e. solutions ofLorentz invariant conditions), similar to those of �g. 4. In particular, it must turn the region

ÃP into the half line of the real axis that goes from the point P to +∞, which we denote by
OP . Indeed, OP is Lorentz invariant, while any extended region is not.It can be argued [9] that the domain deformation just decribed restores both Lorentz in-variance and analyticity above the LW threshold. To give more details on this, let us write thepropagator (2.2) in the equivalent form

iD0(p
2, m2, ε) + iDLW(p2, m2), (2.6)where

D0(p
2, m2, ε) =

M4

M4 +m4

1

p2 −m2 + iε
, DLW(p2, m2) = − M4

M4 +m4

p2 +m2

(p2)2 +M4
.We can use this decomposition to separate the contributions of the physical poles from the onesof the LW poles in every diagram. Then, we focus on the contributions that involve LW poles.For example, in the bubble diagram we take

JLW(p) =

∫

dDk

(2π)D
DLW(k2, m2

1)DLW((k − p)2, m2
2). (2.7)The function JLW(p) is analytic and Lorentz invariant in the main region Ã0, because theWick rotation is analytic there. In OP (which means on the real axis above P ) the domaindeformation described above leads to the result [9]

JLW(p) =
1

2

[

J0+LW(p) + J0−LW(p)
]

, (2.8)where the functions J0±LW(p) are obtained by analytically continuing JLW(p) from Ã0 to OP fromthe half plane Im[p0] > 0 or from the half plane Im[p0] < 0, respectively, as illustrated in �g.6. The continuations can be stretched to neighborhoods of OP above P , to eventually cover anextended region AP such as the one shown in �g. 7.In the end, the complex plane is divided into disjoint regions Ai of analytiticy. We call A0the analytic region that contains the imaginary axis. The function JLW(p) is analytic in each8
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Figure 6: De�nitions of J0+LW(p) and J0−LW(p)region, but not on the entire complex plane. Formula (2.8) relates the value of the functionin AP to the value of the function in A0. In particular, it ensures Lorentz invariance andanalyticity in AP thanks to the Lorentz invariance and analyticity in Ã0.We stress again that the amplitudes must be evaluated at generic external momenta and ina generic Lorentz frame, because special Lorentz frames may squeeze some analytic regions Aiinto curves Γi. For example, in the center of mass frame p = 0, the region ÃP of the bubblediagram is squeezed onto OP . The value of the amplitude in OP is ill de�ned at p = 0, butcan be worked out at p 6= 0, where ÃP is extended, by means of the deformation procedureexplained above. Note that the deformation also squeezes ÃP onto OP , but that happens when
Re[p0]P

Im[p0]

Figure 7: Analytic regions9
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the amplitude is being evaluated inside of it, not before.The integrand of J(p) is singular where the LW pinching occurs, but the singularity is inte-grable. Speci�cally, focus on the intersection OP between ÃP and the real axis. The pinchinginvolves the left LW pair of one propagator and the right LW pair of the other propagator. For
p small the integral around the pinching of the top LW poles is proportional to [9]

dτdu

τ − iC|p|u, (2.9)where C is a positive, p-independent constant, u = cos θ, θ being the angle between the vectors
p and k, and τ parametrizes the �uctuation of |k| around the value it has at the singularity,which is √(p0)4 − 4M4/(2|p0|). The pinching of the bottom LW poles is described by �ippingthe sign in front of iC.We see that, basically, a nonvanishing |p| provides the prescription for handling the integral.The limit |p| → 0 can be evaluated explicitly, because it squeezes ÃP onto OP bypassing thedomain deformation. The result is

dτdu

[

P
1

τ
+ iπsgn(u)δ(τ)

]

→ dτP
1

τ
, (2.10)where P denotes the principal value and �sgn� is the sign function. In the last step we haveperformed the u integration, which is trivial because the integrand of J(p) is u independent at

|p| = 0.Let us describe what happens in more complicated diagrams. At one loop, the LW pinchingsare similar to those of the bubble diagram. They are still described by �g. 3 and occur betweenthe LW poles of any pair of propagators. As before, the LW thresholds on the real axis are givenby the formula p2 = 2M2, where now p is any sum of external (incoming) momenta. In section6 the triangle diagram is studied in detail. With more loops, the LW thresholds can involveboth LW poles and physical poles. However, apart from minor di�erences, the arguments andproperties outlined above � such as the recovery of analyticity and Lorentz invariance by meansof the domain deformation, the behavior (2.9) of the integral around the potential singularitydue to the LW pinching, as well as formula (2.8) � are still expected to hold, because theiressential features are not related to the speci�c diagrams we have considered. More details onthis can be found in section 7.3 Analytic continuation of the cut diagramsIn this section, we explain how to analytically continue the cutting equations for the studyperturbative unitarity. Due to the domain deformation explained in the previous section, we10
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have to include complex values of the loop space momenta k. Nevertheless, the contributionsto the cutting equations due to the poles of the same LW pair still compensate each other. Thisresult is ensured by the key formula (5.6). That formula only holds at ε = 0, where standardregions of the complex plane are squeezed to the real axis (see below). We have to clarify howto work at nonzero ε and when exactly the limit ε → 0 must be taken, if before or after thedomain deformation.We �rst discuss related issues in standard theories, then move to the LW models.When ε → 0, the standard pinching takes place. Consider, for example, the cut version ofthe standard bubble diagram of a massive �eld of mass m. The branch points are p0 = ±2mand the cuts are p0 > 2m and p0 6 −2m, located on the real axis, where p0 denotes the externalenergy and p is assumed to vanish. Those cuts are squeezed regions, one of which is shown in�g. 8 (c). At nonvanishing ε, each cut splits into two cuts, as shown in �g. 8 (a), with branchpoints p0 = ±(2m2 − iε)/m and p0 = ±(2m2 + iε)/m. Such cuts do not intersect the real axisat ε 6= 0, so we are allowed to study the cutting equation in any interval of the real axis andanalytically continue the result to the whole real axis.The limit ε → 0 divides the complex plane into disconnected regions. If we deform the cutsanalytically before the limit, we may obtain �gure (b), the disconnected regions being A and
A′. However, what physics prescribes is �gure (c), where the region A′ is squeezed to the realaxis. The value of the amplitude on the real axis is obtained by approaching the real axis fromabove, while the value of the complex conjugate amplitude is obtained by aproaching the realaxis from below. Let us inquire about the value of the amplidue in the region A′.It is easy to show that, in the limit ε → 0, the value of the cut diagram in the intersection
A′

⊥ between A′ and the real axis is equal to the discontinuity of the amplitude. Indeed, consider�g. 9, which represents the complex energy plane in the case of the bubble diagram (�g. 2),its conjugate and minus the sum of the two cut diagrams (�g. 12), respectively. The cuts aredisplaced from the real axis at ε 6= 0. In what follows we imagine to take ε → 0 and just reportthe values of the diagrams in this limit. The cutting equation tells us that the sum (i) + (ii)

A

(c)

A

A′

(b)

A

O

(a)Figure 8: Analytic regions of the standard bubble diagram11
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D −X
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D
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Figure 9: Branch cuts of the cutting equations for the standard bubble diagramis equal to (iii) and that (iii) vanishes everywhere except in the cuts for ε → 0. Let X denotethe value of the bubble diagram above the cut in that limit and D = −1/(8π)
√

1− (4m2/p2)the well-known value of the discontinuity. Then, the value of the bubble diagram below the cutis X − D. Since the sum (i) + (ii) must vanish both above the two cuts and below them, weinfer that the value of the conjugate bubble diagram is −X above the cut and D − X belowthe cut. This implies that the region in between the cuts of �gure (iii) must have value D,which is what we claimed. Thus, the analytic function of the region A′ shown in �g. 8 (b) is
−1/(8π)

√

1− (4m2/p2), while the analytic function of the region A is identically zero.We see that a single function that is analytic in a neighborhood of the real axis at ε 6= 0breaks into multiple analytic functions when ε tends to zero. Each cut diagram is analyticthroughout the real axis at ε 6= 0. Instead, at ε = 0 the real axis is divided into several domainsand the cut diagram is separately analytic in each domain.These remarks are useful when we move to the Lee-Wick models. We consider a generic one-loop diagram and describe how the cutting equations are derived in sections 5 and 6, focusingon the regions that have intersections with the real axis. We must combine the discussionabout the analytic regions associated with the LW pinching with the discussion about theusual pinching. The standard threshold reads p2 = (mi + mj)
2, where mi and mj are themasses of two particles circulating in the loop and p is a sum of incoming momenta. The LWthreshold on the real axis is p2 = 2M2.Assume �rst that 2M2 > (mi +mj)

2 and P ′ is located above Q. The cut diagram leads toa typical situation like the one of �g. 10. Above the LW threshold P , we study the di�erence
iM − iM∗, where M = −iλ2J/2 is the amplitude, working at ε 6= 0 in a subdomain of Ã3,for example an interval D3 of the real axis. Then, we perform the domain deformation, whichsqueezes the region Ã3 to the real axis, till it becomes the portion A3 = OP of the real axis from12
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γÃ1

Ã2

Ã3

Ã4

Ã5

PP ′QFigure 10: Standard pinching and LW pinching
P to in�nity. We show that the calculation can be extended through the domain deformation.Nevertheless, iM− iM∗ does not have the expected form, as long as ε remains nonzero. At theend, we take the limit ε → 0 and prove that iM − iM∗ can be expressed as predicted by theunitary cutting equation, encoded in the identity iT − iT † = −TT †.Below the threshold P , the domain deformation is unnecessary. We split the calculation intwo parts. The limit ε → 0 makes two standard poles coincide in Q and divides the positivereal axis below P ′ into two portions: one portion is the domain D1 that goes from the originto Q, which belongs to the region Ã1; the other portion is the domain D5 that goes from Q to
P ′, which belongs to the region Ã5.We can prove unitarity in A1 by working in an interval of D1, integrating rigidly on theloop space momenta, then taking ε → 0 and analytically continuing the cutting equation tothe whole D1 and then A1.Similarly, we can study iM − iM∗ in an interval of D5 (where we are allowed to rigidlyintegrate on the loop space momenta, since D5 is below γ) and then take the limit ε → 0.After that, we analytically continue the cutting equation to the interval of the real axis thatgoes from Q to P . So doing, we cover the whole region A5, which is the segment of the realaxis going from Q to P , including the portion where we cannot integrate on the loop space

A3A5A1
PQFigure 11: Intersections of the analytic regions with the real axis13
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momenta rigidly. The analytic regions that intersect the real axis are then those of �g. 11.Now, assume that 2M2 > (mi+mj)
2, but P ′ is located below Q. In that case, it seems thatwe cannot treat the portion of the real axis included from Q to P with the method explainedabove. Nevertheless, it is always possible to switch to a situation like the one of �g. 10. Indeed,for p = 0, P ′ coincides with P and Q is below P ′ = P . By continuity, for nonvanishing, butsu�ciently small p, Q is still below P ′. This proves that there exists an open domain O5 ⊂ Ã5of the space of the external momenta where the point Q is located below P ′. From O5 we canproceed as explained above and reach A5 after the analytic continuation.Finally, when 2M2 < (mi +mj)

2 the point Q is located above P . Then, below Q we canproceed as in the pure LW case, while above Q we can perform the domain deformation andlet ε tend to zero at the end.4 The standard bubble diagram revisitedIn this section, we reconsider the standard bubble diagram and study its discontinuity. Wegeneralize the usual derivation [17] in various directions, to prepare the extension to the Lee-Wick models.We use the dimensional regularization and work in a generic Lorentz frame, instead ofchoosing, say, the external momentum p = (p0,p) of the form (p0, 0). One reason is that thischoice is only allowed for timelike external momenta. More importantly, we have seen that inthe LW models it is crucial to keep the external space momentum p di�erent from zero, toenlarge the region ÃP of the complex plane, which is otherwise squeezed on the real axis.We also take di�erent masses m1, m2, and independent in�nitesimal widths ε1, ε2, whichwe keep nonvanishing as long as we can. As shown in ref. [12], it is possible to work out moregeneral versions of the cutting equations at ε 6= 0 in the standard case. We will see in the nextsections that this is no longer true in the LW case.The loop integral reads
iM(p) =

λ2

2

∫

dDk

(2π)D
1

k2 −m2
1 + iε1

1

(k − p)2 −m2
2 + iε2

, (4.1)where M(p) is the amplitude. We can equivalently write (4.1) as
iM(p) =

λ2

2

∫

dk0dD−1k

(2π)D

2
∏

j=1

1

(ej − ωj + iεj)(ej + ωj − iεj)
, (4.2)where e1 = k0, e2 = k0 − p0, ω1 =

√

k2 +m2
1 and ω2 =

√

(k− p)2 +m2
2. In going from (4.1)to (4.2), we have expanded the denominators for ε1, ε2 small and rescaled such widths.14
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We perform the integral on k0 by using the residue theorem and closing the integrationcontour in the lower half k0 plane. The relevant poles are located at k0 = z1 and k0 = z2,where
z1 = ω1 − iε1, z2 = p0 + ω2 − iε2.The k0 integral of iM leads to

iM(p) = −iλ2

2

∫

dD−1k

(2π)D−1
[Res(z1) + Res(z2)] , (4.3)where Res(z) denotes the residue of the integrand (excluding the factor λ2/2) in k0 = z. We�nd

Res(z1)=
1

2z1(z1 − z2)(z1 + z2 − 2p0)
=

1

2(ω1 − iε1)∆−(ω1 + ω2 − p0 − iε+)
≡ r1,

Res(z2)=− 1

2(z2 − p0)(z1 − z2)(z1 + z2)
= − 1

2(ω2 − iε2)∆−(ω1 + ω2 + p0 − iε+)
≡ r2, (4.4)while

∆− = z1 − z2 = ω1 − ω2 − p0 − iε− (4.5)and ε± = ε1 ± ε2. The denominator ∆− gives ambiguous distributions, since the sign of ε−depends on the order with which we perform the limits ε1 → 0 and ε2 → 0. As shown in ref.[12], the ambiguity must actually cancel out. Indeed, it does disappear as soon as we take thesum of the two residues, which gives
Res(z1) + Res(z2)=− 1

4z1(z2 − p0)

(

1

z1 + z2 − 2p0
+

1

z1 + z2

)

=− 1

4ω1ω2

(

1

ω1 + ω2 − p0 − iε+
+

1

ω1 + ω2 + p0 − iε+

)

. (4.6)In the last line we sent ε1 and ε2 to zero in a couple of places where they are unimportant. Forexample, the factor 1/z1 can be replaced by 1/ω1. It is not convenient to make this replacementdirectly in formulas (4.4), because of the presence of the ambiguous denominator (4.5). In therest of the paper, we make similar replacements, when they are allowed, without further notice.The discontinuity DiscM = 2iImM of the amplitude can now be evaluated from (4.3) bymeans of the identity
1

x± iε
= P

(

1

x

)

∓ iπδ(x), (4.7)where P denotes the principal value. We �nd DiscM = iλ2Υ/2, where
Υ(p) ≡

∫

dD−1k

(2π)D−1

2π

(2ω1)(2ω2)

[

δ(p0 − ω1 − ω2) + δ(p0 + ω1 + ω2)
]

. (4.8)15
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m Figure 12: Cut bubble diagramsIf we relabel q1 = k and q2 = p − k and introduce integrals over q1 and q2, together withdelta functions that impose q0i = ±ω′

i ≡
√

q2
i +m2

i , p = q1 + q2, we can view δ(p0 ± ω1 ± ω2)as the total energy conservation δ(p0 − q01 − q02). Then we can write Υ as
∫

dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(p− q1 − q2)

[

2πδ(q01 − ω′
1)2πδ(q

0
2 − ω′

2)

(2ω′
1)(2ω

′
2)

+
2πδ(q01 + ω′

1)2πδ(q
0
2 + ω′

2)

(2ω′
1)(2ω

′
2)

]and �nally
∫

dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(p−q1−q2)(2π)δ(q
2
1−m2

1)(2π)δ(q
2
2−m2

2)
[

θ(q01)θ(q
0
2) + θ(−q01)θ(−q02)

]

.(4.9)We see that DiscM = iλ2Υ/2 is equal to i times the sum of the two cut diagrams C1, C2 shownin �g. 12, i.e.
iM− iM∗ = −λ2

2
Υ = −C1 − C2. (4.10)The cut diagrams can be computed by replacing the ordinary propagators with the cut ones,

i

p2 −m2 + iε
→ 2πθ(±p0)δ(p2 −m2), (4.11)and equipping each shadowed vertex with a minus sign. The sign in front of p0 is determinedby the direction of the energy �ow through the cut.Formula (12) is nothing but the relation iT − iT † = −TT † in the particular case we areconsidering and shows that the bubble diagram satis�es unitarity.For completeness, we report the value of the integral Υ in four dimensions, which is wellknown:

Υ(p) =
1

8πp2
θ(p2 − (m1 +m2)

2)

√

(p2 −m2
1 −m2

2)
2 − 4m2

1m
2
2. (4.12)4.1 CommentsThe procedure we have used in this section is general enough to be extended to the LW mod-els. However, before moving to the LW case, we would like to emphasize the strategy of thecalculation and compare it with other strategies.16
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The �rst step has been to integrate on the energy by means of the residue theorem. Onlyafter that, we have used the decomposition (4.7). The usage of that decomposition is extremelydelicate, especially in products of distributions. For example, it is very inconvenient to use itbefore applying the residue theorem, directly in formula (4.1). If we do so (working at p = 0and in the equal mass case m1 = m2 = m, for simplicity), we get
DiscM = iλ2

∫

dDk

(2π)D

[

π2δ(k2 −m2)δ((p− k)2 −m2)− P
1

k2 −m2
P

1

(k − p)2 −m2

]

. (4.13)The �rst contribution to (4.13), which can be rewritten as
iλ2

4

∫

dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(p− q1 − q2)(2π)δ(q
2
1 −m2)(2π)δ(q22 −m2), (4.14)resembles the �nal result iλ2Υ/2, with Υ given by (4.9). This lead some authors [16] to thinkthat the two are equal and that the term with the two principal values in (4.13) does notcontribute. Both statements are incorrect.An apparent di�erence between iλ2Υ/2 and (4.14) is that (4.9) contains the combinationof theta functions Θ ≡ θ(q01)θ(q

0
2) + θ(−q01)θ(−q02), while (4.14) does not. If we multiply theintegrand of (4.14) by 1 = Θ + 1 − Θ, we can easily check that the di�erence 1 − Θ, which isequal to θ(q01)θ(−q02) + θ(q01)θ(−q02), gives zero. Thus, we can safely insert Θ in the integral of(4.14) and make it more similar to iλ2Υ/2.A more serious di�erence, instead, is the multiplying factor. Formula (4.14) is not reallyequal to iλ2/2 times (4.9), contrary to the claim of ref. [16], because it is multiplied byan additional factor 1/2. The missing contribution must come from the product of the twoprincipal values in formula (4.13). We have checked this fact numerically with a Mathematicaprogram, starting from

−iλ2

∫

dDk

(2π)D
k2 −m2

(k2 −m2)2 + ε2
(p− k)2 −m2

((p− k)2 −m2)2 + ε2and taking smaller and smaller values of ε. The argument used in ref. [16] to claim that thisexpression vanishes was to turn it to the Euclidean framework, where it naively becomes real,while in Minkowski spacetime it is purely imaginary. The point is that the Wick rotation isnontrivial in this case, because the integrand has poles in the �rst and third quadrants, whichmust be taken into account. More details can be found in ref. [2], where the problems of thesetypes of Minkowski integrals are studied in depth.
17
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5 The Lee-Wick bubble diagramIn this section we study the LW version of the bubble diagram and show that it satis�es thecorrect cutting equation, with no propagation of unphysical degrees of freedom through thecuts. The loop integral is
iM=

λ2

2

∫

dDk

(2π)D
D(k2, m2

1, ε1)D((k − p)2, m2
2, ε2) (5.1)

=
λ2M8

2

∫

dk0dD−1k

(2π)D

2
∏

j=1

1

(ej − νj)(ej + νj)(ej − ν∗
j )(ej + ν∗

j )(ej − ωj + iεj)(ej + ωj − iεj)
,where ν1 = √

k2 + iM2, ν2 = √

(k− p)2 + iM2 and the other de�nitions coincide with those ofthe previous section. For the reasons explained in section 2, it is important to work at p 6= 0.Making the Wick rotation and closing the k0 integration path in the lower half plane, �g.3 tells us that we need the poles
z1 = ω1 − iε1, z2 = p0 + ω2 − iε2, w1 = ν1, w2 = p0 + ν2, (5.2)together with the conjugates w∗

1 and w∗
2. We �nd

iM = −iλ2

2

∫

dD−1k

(2π)D−1
[Res(z1) + Res(z2) + Res(w1) + Res(w2) + Res(w∗

1) + Res(w∗
2)]. (5.3)We perform the domain deformations associated with the contributions of Res(wi) and

Res(w∗
i ) in complex conjugate ways. Then, calling U and U∗ the deformed domains, suchcontributions read

− iλ2

2

∫

U

dD−1k

(2π)D−1
Res(wi)−

iλ2

2

∫

U∗

dD−1k

(2π)D−1
Res(w∗

i ). (5.4)The other contributions, due to Res(zi), can be calculated with the natural real k integrationdomain.Now, we can write
[
∫

U∗

dD−1k

(2π)D−1
Res(w∗

i )

]∗

=

∫

U

dD−1k

(2π)D−1
[Res(w∗

i )]
∗, (5.5)where it is understood that the complex conjugations in [Res(w∗

i )]
∗ do not act on k. We provethe identity

[Res(w∗
i )]

∗ = Res(wi) (5.6)at ε1 = ε2 = 0, which allows to turn (5.5) into
[
∫

U∗

dD−1k

(2π)D−1
Res(w∗

i )

]∗

=

∫

U

dD−1k

(2π)D−1
Res(wi). (5.7)18
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Formula (5.6) expresses the compensation between the contributions of the poles of thesame LW pair to the cutting equations. It is the key result to prove that only the physicaldegrees of freedom propagate through the cuts.To derive (5.6), observe that when ε1 and ε2 tend to zero we have
Res(w1)− [Res(w∗

1)]
∗ =

πM6

2(m2
1 − iM2)ν1

δ̃((ν1 − p0)2 − ω2
2)

((ν1 − p0)2 − (k− p)2)2 +M4
, (5.8)where

δ̃(z) ≡ lim
ε→0

∆ε(z), ∆ε(z) ≡
1

2iπ

(

1

z − iε
− 1

z + iε

)

,is the usual delta distribution extended to complex values, which means that it is equal to zeroanywhere but on the real axis, where it is the ordinary delta function. The right-hand side of(5.8) collects the terms where the limits ε1, ε2 → 0 are nontrivial, which need to be studied indetail.Now we show that δ̃(z) does not contribute to the integrals (5.4). The pinching condition forboth Res(w1) and [Res(w∗
1)]

∗ is (2.4), i.e. p0 = ν1 + ν∗
2 , where, again, the complex conjugationdoes not act on k. On the other hand, the argument of δ̃ vanishes for p0 = ν1 ± ω2. Theseconditions cannot hold at the same time, because p0 = ν1 + ν∗

2 = ν1 ± ω2 implies −iM2 = m2
2.This fact has important consequences. When ε tends to zero, the contributions to∆ε(z) providepotential singularities ∼ 1/z, with z = (ν1−p0)2−ω2

2. However, such singularities are actuallyintegrable, because z is complex. Therefore, we have two potential singularities, those due tothe LW pinching and those due to 1/z. Both are separately integrable and could only givetrouble if they occurred at the same time. Since this is impossible, the two contributions to
∆ε(z) mutually cancel for ε → 0 and the right-hand side of (5.8) can be dropped.Similar arguments can be applied to Res(w2)− [Res(w∗

2)]
∗. We conclude that identity (5.6)holds. Thanks to it, the second integral of (5.4) is the complex conjugate of the �rst integral,so (5.7) holds.Since formula (5.6) is valid only at ε1 = ε2 = 0, we have to carefully explain when suchwidths must be sent to zero. We work in the intervals D1, D3 and D5 de�ned in section 3. In

D3 we perform the domain deformation at ε1, ε2 6= 0, for the contributions due to Res(wi) and
Res(w∗

i ). Instead, we keep the k integration domain rigid for the other contributions, as well asfor the calculations in D1 and D5. Then, by means of identities like (5.8) and the calculationsreported below, we check that the expected cutting equation separately holds in D1, D3 and
D5, up to corrections of the form ∆ε(z), which are killed by the limit ε → 0. From section 3,we know that the cutting equation can be analytically extended from D1, D3 and D5 to theregions A1, A3 and A5, respectively. 19
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Taking the limit ε1, ε2 → 0 on the contributions of Res(wi) and Res(w∗
i ) to (5.3), but keeping

ε1, ε2 6= 0 in the contributions due to Res(z1) and Res(z2), formulas (5.4) and (5.7) give
iM = −iλ2

2

∫

dD−1k

(2π)D−1
[Res(z1) + Res(z2)]− iλ2Re

∫

U

dD−1k

(2π)D−1
[Res(w1) + Res(w2)].The discontinuity of the amplitude is then

DiscM = 2iImM =− iλ2

∫

dD−1k

(2π)D−1
Im [Res(z1) + Res(z2)] .This result proves that, as anticipated, the LW poles do not contribute to the imaginary partof the amplitude.Now we show that the amplitude obeys the correct cutting equation. We haveRes(z1) = r1h(z1), Res(z2) = r2h(z2), (5.9)where r1 and r2 are de�ned in formula (4.4) and

h(k0) =
M4

(k2)2 +M4

M4

((k − p)2)2 +M4
.We understand the dependence of h on the other variables besides k0, because they are notimportant for the discussion.As before, the ill-de�ned distributions contained in r1 and r2 cancel out in the sum ofRes(z1) and Res(z2). We haveRes(z1) + Res(z2) = r1h(z1) + r2h(z2) = u(z1, z2)v(z1, z2), (5.10)where

u(z1, z2) =
z1(z2 − p0)[h(z1)− h(z2)] + z2(z2 − p0)h(z1)− z1(z1 − p0)h(z2)

4p0(z1 − z2)z1(z2 − p0)
,

v(z1, z2) =
1

z1 + z2 − 2p0
− 1

z1 + z2
.It is clear that u(z1, z2) is regular, since the numerator vanishes when z1 = z2. Note that h(z)is real and nonvanishing for real z. Thus, we can replace u(z1, z2) by u(ω1, ω2 + p0). At thispoint, we just need to take the imaginary part of v(z1, z2) by means of formula (4.7), whichgives

DiscM=−iπλ2

∫

dD−1k

(2π)D−1
u(ω1, ω2 + p0)

[

δ(ω1 + ω2 − p0)− δ(ω1 + ω2 + p0)
]

=
iλ2

2

M8

(M4 +m4
1)(M

4 +m4
2)
Υ, (5.11)20
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where Υ is the integral (4.8). The second line is obtained by noting that the delta functionsthat appear in the �rst line of (5.11) simplify the value of the function u considerably and allowus to make the replacements
u(ω1, ω2 + p0)δ(ω1 + ω2 ± p0) → ± 1

4ω1ω2

M8δ(ω1 + ω2 ± p0)

(M4 +m4
1)(M

4 +m4
2)
.Following the procedure that we used in the standard case, we relabel q1 = k and q2 = p−kand obtain that DiscM is equal to iλ2/2 times

∫

dDq1
(2π)D

dDq2
(2π)D

(2π)Dδ(D)(p− q1 − q2)Dc(q
2
1, m

2
1)Dc(q

2
2, m

2
2)
[

θ(q01)θ(q
0
2) + θ(−q01)θ(−q02)

]

,where
Dc(p

2, m2) = 2πδ(p2 −m2)
M4

M4 +m4
. (5.12)So doing, we have shown that (4.10) holds in each interval D1, D3 and D5 of the realaxis, with the cut propagators θ(±p0)Dc(p

2, m2). Then, we analytically continue (4.10) to theregions A1, A3 and A5. Unitarity is veri�ed, because the cut propagators θ(±p0)Dc(p
2, m2)just propagate the physical degrees of freedom.6 The LW triangle diagramIn this section we prove that the triangle diagram (�g. 13) also satis�es the correct cuttingequation. The loop integral reads

iM= λ3

∫

dDk

(2π)D
D(k2, m2

1, ε1)D((k − p)2, m2
2, ε2)D((k − q)2, m2

3, ε3)

= λ3M12

∫

dk0dD−1k

(2π)D

3
∏

j=1

1

(ej − νj)(ej + νj)(ej − ν∗
j )(ej + ν∗

j )(ej − ωj + iεj)(ej + ωj − iεj)
,

Figure 13: Triangle diagram21
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where e3 = k0 − q0, ω3 =
√

(k− q)2 +m2
3, ν3 =

√

(k− q)2 + iM2 and the other de�nitionscoincide with those of the sections 4 and 5.Closing the q0 integration path in the lower half plane, we just need the residues of thepoles
z1 = ω1 − iε1, z2 = p0 + ω2 − iε2, z3 = q0 + ω3 − iε3,

w1 = ν1, w2 = p0 + ν2, w3 = q0 + ν3,together with w∗
1, w∗

2 and w∗
3.The LW thresholds that are located on the real axis are

p2 = 2M2, q2 = 2M2, (p− q)2 = 2M2.As explained in section 2, we must work at ε 6= 0, choosing generic external momenta p and qin a generic Lorentz frame. In each region Ãi of the space of p and q, we choose one or moresubdomains Oi with an accumulation point, typically intervals of the real axis. We separatethe contributions where it is necessary to deform the integration domain of the loop spacemomentum k from the contributions where the deformation is unnecessary. It can be easilychecked that an identity of the form (5.8) still holds. Like before, the right-hand side of (5.8)can be dropped, because the potential singularities ∼ 1/z are integrable and do not occursimultaneously with the LW pinching. This leads again to the crucial cancellation formula(5.6), which ensures that only the standard residues contribute to the imaginary part of M, inthe limit ε → 0. At the end, we analytically continue the cutting equation from the subdomains
Oi to the whole analytic regions Ai.Some attention must be paid to the ill-de�ned distributions, which are more tricky than inthe previous case.The ill-de�ned distributions cancel out againThe method we use here to prove this result is simpler than the one of the previous section,but we have to take the limit ε → 0 at a slightly earlier stage.The residue of the integrand (excluding the factor λ3) in z1 is

M12

2ω1(m4
1 +M4)

1

|(ω1 − p0)2 − ν2
2 |2|(ω1 − q0)2 − ν2

3 |2
1

(ω1 + ω2 − p0 − iε12+ )(ω1 + ω3 − q0 − iε13+ )

× 1

(ω1 − ω2 − p0 − iε12− )(ω1 − ω3 − q0 − iε13− )
, (6.1)

22
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where εij± ≡ εi ± εj . The last two ratios are ill-de�ned distributions. We want to show thattheir contributions drop out. When ε → 0, the identity
1

ω1 − ω2 − p0 − iε12−
= P

1

ω1 − ω2 − p0
+ iπsgn(ε12− )δ(ω1 − ω2 − p0),tells us that the ill-de�ned part is the one proportional to sgn(ε12− ). It is easy to check that inthe expression (6.1) sgn(ε12− ) multiplies

iπM12

4ω1ω2(m
4
1 +M4)(m4

2 +M4)

1

|(ω1 − q0)2 − ν2
3 |2

× 1

(ω1 + ω3 − q0 − iε13+ )

1

(ω1 − ω3 − q0 − iε13− )
δ(ω1 − ω2 − p0) (6.2)and cancels an analogous contribution coming from Res(z2), which can be obtained by exchang-ing the poles z1 and z2, i.e. ω1 with ω2+p0, everywhere but in the �rst ratio of (6.2), as well as

ε1 with ε2. Since (6.2) is invariant under these operations, but sign(ε12− ) turns into its opposite,the total vanishes.A similar contribution to Res(z1), proportional to sgn(ε13− ) cancels a contribution due toRes(z3). Formula (6.1) also contains a term equal to sgn(ε12− )sgn(ε13− ) times
− π2M12δ(ω1 − ω2 − p0)δ(ω1 − ω3 − q0)

8ω1ω2ω3(m
4
1 +M4)(m4

2 +M4)(m4
3 +M4)

. (6.3)Summing the contributions of this type due to the three standard residues z1, z2, z3, and notingthat sgn(ε12− )sgn(ε13− ) + sgn(ε23− )sgn(ε21− ) + sgn(ε31− )sgn(ε32− ) = 1,which is easy to prove by choosing ε1 > ε2 > ε3, the total is (6.3), which has no imaginary part,henceforth drops out of the cutting equation.UnitarityCollecting the results found so far, the discontinuity of the amplitude is
DiscM =− 2iλ3

∫

dD−1k

(2π)D−1
Im [Res(z1) + Res(z2) + Res(z3)] . (6.4)Dropping the ill-de�ned distributions, Res(z1) e�ectively simpli�es to

M12

2ω1(m4
1 +M4)

1

|(ω1 − p0)2 − ν2
2 |2|(ω1 − q0)2 − ν2

3 |2
P

1

ω1 − ω2 − p0
P

1

ω1 − ω3 − q0

× 1

(ω1 + ω2 − p0 − iε12+ )(ω1 + ω3 − q0 − iε13+ )
.23
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m Figure 14: Cut triangle diagramsNow, observe that all the ratios that appear here are real except the last one, which has theform

1

a− iε

1

b− iε′
.We need to calculate the imaginary part of this expression, which can be handled by usingthe identity

Im

[

1

a− iε

1

b− iε′

]

=
1

2i

(

1

a− iε
− 1

a+ iε

)

1

b+ iε′
+

1

2i

(

1

b− iε′
− 1

b+ iε′

)

1

a− iε

=
πδ(a)

b+ iε′
+

πδ(b)

a− iε
. (6.5)The �rst contribution of the last line leads to

− πδ(ω1 + ω3 − q0)

4ω1ω3(m4
1 +M4)(m4

3 +M4)

M12

|(ω1 − p0)2 − ν2
2 |2

1

ω1 + ω2 − p0 + iε12+
P

1

ω1 − ω2 − p0
. (6.6)Now, observe that if we replace the principal value in this expression with another prescription,the di�erence

− iπ2M12δ(ω1 + ω3 − q0)δ(ω1 − ω2 − p0)

8ω1ω2ω3(m
4
1 +M4)(m4

2 +M4)(m4
3 +M4)

(6.7)is purely imaginary. The contributions of this type cancel out from the formula for iM− iM∗ =

iDiscM, as long as we manage to write it in a manifestly real way. We proceed by changingthe prescription in a convenient way and check the cancelations in the �nal result (6.9).With a new prescription, the contribution of (6.6) to iM− iM∗ can be turned into
− λ3

∫

dDk

(2π)D
θ(k0)Dc(k

2, m2
1)D

∗((k − p)2, m2
2, ε

12
+ )θ(q0 − k0)Dc((k − q)2, m2

3) ≡ −C1, (6.8)where C1 is the �rst cut diagram of �g. 14, calculated with the right cut propagators [i.e.
θ(±p0)Dc(p

2, m2)], which propagate only the physical degrees of freedom. Similarly, the secondcontribution of (6.5) gives −C2, where C2 is the second cut diagram.24
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Repeating the same steps for z2 and z3 we �nd minus the other four cut diagrams Cj ,
j = 3, . . . 6, which can be obtained by permuting the vertices of the cut diagrams shown in �g.14. The total gives the correct cutting equation

iM− iM∗ = −
6

∑

j=1

Cj. (6.9)Note that the right-hand side of this formula is manifestly real, because each cut diagram isaccompanied by its complex conjugate (which is obtained by switching the shadowed portion ofthe diagram with the unshadowed one). For this reason, the di�erences (6.7) that are involvedin the changes of prescriptions from expressions like (6.6) to expressions like (6.8) cancel out.Again, formula (6.9), which is nothing but the identity iT − iT † = −TT † in the particularcase of the triangle diagram, shows that no unphysical degrees of freedom propagate throughthe cuts, which con�rms the perturbative unitarity of the LW model.7 Unitarity with nontrivial numeratorsSo far, we have considered only theories with nonderivative vertices. For most applications,such as quantum gravity and gauge theories, it is necessary to include the case where verticescarry derivatives, which leads to nontrivial numerators in the loop integrals. We show thattheir presence does not change the previous results. We understand that the dimensionalregularization is used, which makes it possible to apply the residue theorem even when theintegral on the energy is divergent (for details on this, see the appendix of ref. [2]).We assume that the Lagrangian is Hermitian, because this is an essential requirement forunitarity. Then the vertices, which carry an additional factor i, are anti-Hermitean. Denotea vertex with n legs by V µ1...µn

α1...αn

(p, k), where p and k denote the external and loop momenta,respectively, µi are Lorentz indices and αi are any other indices. We can decompose it as
V µ1...µn

α1...αn

(p, k) =
∑

j

A(j)
α1...αn

T µ1...µn

j (p, k),where T µ1...µn

j are real tensor polynomials and A
(j)
α1...αn

are constant anti-Hermitian tensors. Wecan focus on loop integrals with numerators made of products of tensors T µ1...µn

j (p, k).Unitarity still holds, since the main arguments of the previous sections are determined bythe locations of the poles, which do not change. For example, let us check that the ill-de�neddistributions cancel out. Consider formulas (4.4). If a numerator is present, we can incorporateit into the function h that appears in the sum Res(z1)+Res(z2) of (5.9), so the total (5.10) is stillregular. The argument is basically the same for the triangle and more complicated diagrams.25
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Moreover, the crucial identities (5.8) and (5.6) still hold. The Hermiticity of the Lagrangianensures (5.6) up to the e�ects due to iε, which still have the form shown on the right-handside of (5.8). Speci�cally, the limit ε → 0 generates integrable singularities ∼ 1/z, where z is acomplex function of the integration variables that cannot vanish when the LW pinching takesplace. Then, the two contributions of δ̃(z) cancel each other. In the end, the residues of theLW poles simplify in the cutting equations, so the only contributions that survive are thosecoming from the standard poles. It is also clear that most of these features are independent ofthe particular diagram that we are considering, so we expect them to hold in every diagram.8 Violations of unitarity in Minkowski higher-derivativetheoriesThe LW models are de�ned as nonanalytically Wick rotated Euclidean higher-derivative the-ories. In sections 5 and 6 we have made explicit calculations to verify that they satisfy theexpected unitarity equation.It is interesting to inquire whether the Minkowski versions of the same models satisfy theunitarity equation or not. By �Minkowski versions� we mean that the integrals on the energiesare not performed along the integration path of �g. 1 derived in section 2, but along the real
k0 axis, as we would normally do. The integration path splits each LW pair into a pole abovethe path and a pole below the path. We expect that the unitarity equation is violated in thiscase. However, the violation is not visible at the tree level, because no energy integrals areinvolved: the tree cutting equations of the Minkowski models are identical to those of the LWmodels. Thus, it is necessary to make a one-loop calculation.In this section we prove that the bubble diagram of the Minkowski models does not satisfythe expected cutting equation. The example we consider is a particular case where the nonlocaldivergences pointed out in ref. [2] are absent.The loop integral is still (5.1), but now, when we integrate on k0 and close the integrationpath in the lower half plane, we get contributions from a di�erent set of residues. We still havethe physical poles z1 and z2 of (5.2), as well as w∗

1 and w∗
2. However, we have w′

1 = −ν1 and
w′

2 = p0 − ν2 instead of w1 and w2.If the Minkowski theory were unitary, its cut diagrams would coincide with those of theLW theory, because the physical degrees of freedom are the same. Thus, if we subtract thecutting equation (4.10) of the LW theory from the one of the Minkowskian theory, the right-hand side should give zero. We show that, instead, the discontinuity Disc (MM −ME) of thedi�erence MM − ME between the Minkowski amplitude MM and the nonanalytically Wick26
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m Figure 15: Di�erence between the Minkowski and Wick rotated Euclidean theoriesrotated Euclidean amplitude ME does not vanish.Speci�cally, we �nd

Disc (MM −ME) = iλ2

∫

dD−1k

(2π)D−1
Im

[Res(ν1) + Res(p0 + ν2)− Res(−ν1)−Res(p0 − ν2)
]

.We can simplify the calculation by choosing p = m1 = m2 = 0. Then we have ν1 = ν2 =√
k2 + iM2, ω1 = ω2 = |k|. Setting M = 1, the behavior of Disc (MM −ME) as a functionof p0 is nontrivial. Numerically, we �nd the plot of �g. 15 times iλ2. This proves that theMinkowski theories violate perturbative unitarity.9 ConclusionsIn this paper, we have investigated the perturbative unitarity of the Lee-Wick models, formu-lated as nonanalytically Wick rotated Euclidean theories. We have shown that it is possible tostudy the cutting equations in each analytic region Ai of the complex plane, by deriving themin suitable subdomains Oi and then analytically extending the equations to the whole regions

Ai. The unitary cutting equations hold in each Ai, with no propagation of unphysical degreesof freedom. We have made explicit computations in the cases of the bubble and triangle dia-grams, but the derivations can be extended to all the one-loop diagrams. Moreover, the basicarguments do not appear to depend on the speci�c cases we have dealt with, so we believe thatthe conclusions hold for all diagrams.On the other hand, the Minkowski versions of the same higher-derivative theories violateunitarity. In a way or another (violations of the locality of counterterms as shown in ref. [2],or violations of unitarity) the Minkowski higher-derivative theories are not viable. This means27
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