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AbstractThe Lee-Wick models are higher-derivative theories that are claimed to be unitarythanks to a peculiar cancelation mechanism. In this paper, we provide a new formulationof the models, to clarify several aspects that have remained quite mysterious, so far. Specif-ically, we de�ne them as nonanalytically Wick rotated Euclidean theories. The complexenergy plane is divided into disconnected regions, which can be related to one another by awell-de�ned, albeit nonanalytic procedure. Working in a generic Lorentz frame, the mod-els are intrinsically equipped with the right recipe to treat the pinchings of the Lee-Wickpoles, with no need of external ad hoc prescriptions. We describe these features in detailby calculating the one-loop bubble diagram and explaining how the key properties gener-alize to more complicated diagrams. The physical results of our formulation are di�erentfrom those of the previous ones. The unusual behaviors of the physical amplitudes lead tointeresting phenomenological predictions.
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1 IntroductionThe Lee-Wick (LW) models are special higher-derivative theories, de�ned in a peculiarway, which are claimed to lead to a perturbatively unitary S matrix [1, 2, 3]. Precisely,the claim is that they are equipped with well de�ned cutting equations [4], such that if weproject the initial and �nal states onto the subspace V of physical degrees of freedom, onlystates belonging to the same space V propagate through the cuts. Several properties ofthe models and aspects of their formulation have not been clari�ed exhaustively, so far. Inthis paper we plan to overcome those problems by reformulating the theories completely.It is well known that higher-derivative kinetic Lagrangian terms may improve the ul-traviolet behaviors of the Feynman diagrams and may turn nonrenormalizable theoriesinto renormalizable ones, as in the case of higher-derivative gravity [5]. However, thehigher-derivative corrections, if not treated properly, lead to violations of unitarity or evenmathematical inconsistencies [6]. The Lee-Wick idea is promising, because it claims toreconcile renormalizability and unitarity.The propagators of the LW models contain extra poles, which we call LW poles, inaddition to the poles corresponding to the physical degrees of freedom and the poles corre-sponding to the gauge degrees of freedom (such as the longitudinal and temporal compo-nents of the gauge �elds and the poles of the Faddeev-Popov ghosts). The LW poles comein complex conjugate pairs, which we call LW pairs. Cutkosky et al. (CLOP) showed inref. [3] that the S matrix is not analytic when pairs of LW poles pinch the integrationpath on the energy. Analyticity is a property we are accustomed to, but not a fundamentalphysical requirement. Nakanishi [7] showed that, if de�ned in a certain way, the modelsviolate Lorentz invariance. This problem is more serious, but it can be avoided by de�ningthe theories in a di�erent way. In ref. [3] it was proposed to treat the pinching of the LWpoles by means of a procedure of limit, which is known as CLOP prescription. In simplesituations, the CLOP prescription gives an unambiguous, Lorentz invariant and unitaryresult, as con�rmed by the calculations of Grinstein et al. [8] in the case of the bubblediagram. However, it is not clear how to incorporate the CLOP prescription into a La-grangian and ambiguities are expected in high-order diagrams [3]. Thus, some key issuesconcerning the formulation of the LW models have remained open and are awaiting to beclari�ed.It is more convenient to change approach and de�ne the LW models as nonanalyticallyWick rotated Euclidean higher-derivative theories. First, we know from ref. [6] that aMinkowski formulation of such types of higher-derivative theories is not viable, since ingeneral it generates nonlocal, non-Hermitian divergences that cannot be removed by any2
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standard approach. The Wick rotation from the Euclidean framework is thus expected toplay a crucial role, because it is the only viable path.However, the Wick rotation of the higher-derivative theories we are considering turnsout to be nonanalytic, because of the LW pinching, to the extent that the complex energyplane is divided into disjoint regions of analyticity. The Lorentz violation is avoided byworking in a generic Lorentz frame, with generic external momenta, deforming the integra-tion domain on the loop space momenta in a suitable way and then analytically continuingin each region separately. We show that, if we do so, the models are intrinsically equippedwith all that is necessary to de�ne them properly. In particular, there is no need of theCLOP prescription, or any other prescription to handle the pinching of the LW poles.Actually, the CLOP prescription should be dropped, because it leads to ambiguities, evenin a simple case such as the bubble diagram with di�erent physical masses.The behaviors of the amplitudes show some unexpected features, which lead to inter-esting phenomenological predictions. In particular, the violation of analyticity is quiteapparent, when the amplitude is plotted. If ever observed, this behavior could be thequickest way to determine the experimental value of the energy scale M associated withthe higher-derivative terms, which is the key physical constant of the LW models.Indeed, the Lee-Wick models have been also studied for their possible physical appli-cations, which include QED [2], the standard model [9], grand uni�ed theories [10] andquantum gravity [11].The paper is organized as follows. In section 2, we outline the formulation of theLW models as nonanalytically Wick rotated Euclidean theories. In section 3 we studythe LW pinching in detail, in the case of the bubble diagram. In particular, we show howLorentz invariance is recovered in each region of the complex energy plane. In section 4, wedescribe the calculations of the physical amplitudes in a neighborhood of the LW pinchingand show that the CLOP and similar prescriptions are ambiguous and not consistent withour approach. In section 5 we evaluate the bubble diagram in the new formulation andshow that the physical results are in general di�erent from those that follow from theCLOP and other prescriptions. We also comment on the phenomenological relevance ofthe results. In section 6 we explain why the basic properties of our formulation generalizeto more complicated diagrams.2 Lee-Wick models as Wick rotated Euclidean theoriesIn this section we outline the new formulation of the LW models. We begin by describingthe class of higher-derivative theories that we are considering. The higher-derivative La-3
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Figure 1: Poles of the propagatorgrangian terms are multiplied by inverse powers of certain mass scales, which we call LWscales. For simplicity, we can assume that there is just one LW scale, which we denote by
M , since the generalization to many LW scales is straightforward.When M tends to in�nity, the propagators must tend to the ones of ordinary unitarytheories. Moreover, the extra poles that are present when M < ∞ must come in complexconjugate pairs and satisfy Re[p2] > 0, Im[p2] 6= 0.A typical propagator of momentum p is equal to the standard propagator times a realfunction of p2 that has no poles on the real axis. For concreteness, we take

iD(p2, m2, ε) =
iM4

(p2 −m2 + iε)((p2)2 +M4)
. (2.1)More general propagators can be considered. In particular renormalization may lead tostructures such as

iM4

(p2 −m2 + iε)((p2 − µ2)2 +M4)
.However, the key features are already encoded in (2.1) and the extension does not changethe sense of our investigation.The poles of (2.1) are

p0 = ±ωm(p)∓ iε, p0 = ±ΩM (p), p0 = ±Ω∗

M (p), (2.2)where ωm(p) =
√

p2 +m2 and ΩM(p) =
√

p2 + iM2. Their locations are shown in �g. 1,where the LW poles are denoted by means of an ×, while the standard poles are denotedby a circled ×.We can integrate p0 along the real axis or along the imaginary axis. The �rst choicede�nes the Minkowski theory, the second choice de�nes the Euclidean theory. The two givedi�erent results, because, even if the integration path at in�nity does not contribute, some4
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poles are located in the �rst and third quadrants of the complex plane. In ref. [6] it wasshown that in general the Minkowski theories of this type are inconsistent, because they areplagued with nonlocal, non-Hermitian divergences that cannot be subtracted away withoutdestroying the basic properties of the theory. The bubble diagram in four dimensions is oneof the few convergent exceptions, but it becomes nonlocally divergent as soon as nontrivialnumerators are carried by the vertices, which happens for example in higher-derivativegravity. This fact forces us to proceed with the Euclidean theory.Usually, the Wick rotation is an analytic operation everywhere, but in the Lee-Wickmodels it is analytic only in a region of the complex energy plane, the one that containsthe imaginary axis. We call it main region and denote it by A0. The complex plane turnsout to be divided into several disconnected regions Ai, which can be reached from the mainregion in a nonanalytic way. The regions Ai are called analytic regions.In the light of this fact, the calculation of the correlation functions proceeds as follows.The loop integrals are evaluated at generic (possibly complex) external momenta, in eachanalytic region Ai of the complex plane. For a reason that we will explain, we anticipatethat it is also necessary to work in a su�ciently generic Lorentz frame, because specialLorentz frames may squeeze entire regions to lines and make the calculation ill de�ned. The
Ai subdomain where the calculation is done is denoted by Oi and has to satisfy suitableproperties. For example, it must contain an accumulation point.In general, Lorentz invariance and analyticity are lost in the intermediate steps, in allthe regions Ai apart from the main one. They are recovered by deforming the integrationdomain on the loop space momenta in a nontrivial way. After the evaluation, the amplitudeis analytically continued from Oi to the rest of the region Ai. This procedure gives theamplitude of the LW model, region by region. Since it is not possible to relate the regionsanalytically, the Wick rotation is nonanalytic. Yet, the regions are related by a well-de�nednonanalytic procedure, which we describe in the next sections.We may condense their articulated de�nition by saying that the LW models are non-analytically Wick rotated Euclidean higher-derivative theories of a special class.Consider the propagator (2.1) and its poles (2.2). When the imaginary axis is rotatedto the real one, we get the integration path shown in �g. 2. The Wick rotation is lesstrivial when performed in Feynman diagrams. To be explicit, consider the bubble diagram(�g. 3). It has two propagators, so the number of poles doubles. If one propagator hasmomentum k and the other propagator has momentum k − p, in D spacetime dimensionswe have a loop integral proportional to

J (p) =

∫

dDk

(2π)D
D(k2, m2

1, ε1)D((k − p)2, m2
2, ε2), (2.3)5
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Figure 2: The Lee-Wick integration paththe associated amplitude being M(p) = −iλ2J (p)/2, where λ is the coupling and 1/2 isthe combinatorial factor. When we vary the external momentum p, the poles of the �rstpropagator are �xed [given by formula (2.2) with p → k, m → m1], while those of thesecond propagator, which are
k0 = p0 ± ωm2

(k− p)∓ iε, k0 = p0 ± ΩM(k− p), k0 = p0 ± Ω∗

M(k− p), (2.4)move on the complex k0 plane. With respect to the �xed poles, this sextet of poles istranslated by p0 and deformed by p. At some point, the translation makes some poles crossthe imaginary axis, which is the integration path. To preserve analyticity, the integrationpath must be deformed so that the crossing does not actually take place. Equivalently, wecan keep the main integration path on the imaginary axis and add integration contoursaround the poles that cross the imaginary axis. In the end, we obtain a path like the one of�g. 4, where the thick poles are the moving ones. Finally, when we make the Wick rotationto the real axis, we obtain an integration path like the one shown in �g. 5 or, dependingon p, �g. 6. In these pictures we have assumed for simplicity that the external spacemomentum p vanishes. The integration paths obtained from the Wick rotation agree withthose prescribed by Lee and Wick. The general rule, valid for arbitrary Feynman diagrams,
Figure 3: Bubble diagram6
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Figure 4: Euclidean integration path of the bubble diagramis that the left LW pair of a propagator is always above the integration path, while theright LW pair is always below.When the right (respectively, left) LW pair of the propagator D(k2, m2
1, ε1) hits theleft (right) LW pair of D((k − p)2, m2

2, ε2), the integration path gets pinched. We call thisoccurrence LW pinching.The integration paths before and after the LW pinching are illustrated in �gs. 5 and 6.When we perform the Wick rotation, the analytic continuation is straightforward in thesituation of �g. 5, but we �nd an unexpected behavior in the situation of �g. 6. The twosituations correspond to disjoint regions A1 and A2 of the complex p0 plane. Each region
Ai must be studied separately and gives a complex function Ji(p). The complex functions
J1(p) and J2(p) are not related to each other by an analytic continuation. However theyare still related in a well de�ned, nonanalytic way.

Re[k0]

Im[k0]

Figure 5: Integration path of the bubble diagram after the Wick rotation7
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Figure 6: Integration path of the bubble diagram after the Wick rotationWe show that, with these caveats, the procedure to handle the LW pinching is intrinsicto our de�nition of the theory, pretty much like the iε prescription is intrinsic to thede�nition of a theory as a Wick rotated Euclidean one. Moreover, it is consistent withperturbative unitarity.The LW pinching motivated some authors to propose ad hoc prescriptions to handleit. The CLOP prescription [3], for example, amounts to deform the scale M in one of thepropagators of the integral (2.3) to a di�erent value M ′. Under certain conditions, thepinching is absent for M ′ 6= M , the regions we mentioned above are analytically connectedand the Wick rotation is analytic everywhere. After the calculation of the amplitude, thedeformed scale M ′ is sent to M . This operation cuts the complex plane into disconnectedregions.The CLOP prescription is not su�cient to deal with the LW pinching in all the di-agrams, because higher-order diagrams are expected to be ambiguous [3]. Moreover, itappears to be arti�cial. For example, there is no obvious way to incorporate it into theLagrangian or the Feynman rules. In this paper, we also show that the CLOP prescriptionleads to physical predictions that di�er from the ones we obtain and are ambiguous even inthe case of the bubble diagram with m1 6= m2. We also show that, if we strictly apply therules that follow from the formulation of this paper, it is possible to retrieve the correctresult even starting from M ′ 6= M and letting M ′ tend to M at the end. Then, however,the CLOP prescription becomes redundant.In section 6 we explain how the results of this section extend from the bubble diagramto more complicated diagrams.To summarize, we show that the nonanalytically Wick rotated theory is well de�nedand intrinsically equipped with the procedure that allows us to handle the LW pinching.Instead, the prescriptions that can be found in the literature are ambiguous or redundant8
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Figure 7: Lee-Wick pinchingand give predictions that may be in contradiction with ours.3 LW pinchingIn this section we describe the LW pinching in the case of the bubble diagram (�g. 3), thatis to say the loop integral (2.3). First, we integrate on the loop energy k0 by means of theresidue theorem. This operation leaves us with the integral on the loop space momentum
k. Orienting the external space momentum p along the vertical line, the integral on theazimuth is trivial, so we remain with the integral on ks ≡ |k| from 0 to ∞ and the integralon u ≡ cos θ from −1 to 1, where θ is the zenith angle. To illustrate the problematicsinvolved in the LW pinching exhaustively, we consider two cases. In the �rst case we workat p = 0, in the second case we work at p 6= 0. Lorentz invariance suggests that thereshould be no big di�erence between the two situations. It turns out that it is not so,because the method of calculation we are using is not manifestly Lorentz invariant. Thecalculation at p = 0 misses some crucial points, which are visible only at p 6= 0.3.1 LW pinching at zero external space momentumThe LW pinching may involve pairs of LW poles (in which case it is called pure LW pinch-ing) or one LW pole and a standard pole (in which case it is called mixed LW pinching).For the moment, we focus on the pure LW pinching, because at one loop the mixed onecannot occur for real external momenta.There are two basic cases of pure LW pinching, shown in �g. 7. The �rst case involvesthe right LW pair of the �rst propagator and the left LW pair of the second propagator.9



17A1Renor
m

The second case involves the upper-right LW pole of the �rst propagator and the bottom-left LW pole of the second propagator. The other LW pinchings are the complex conjugatesof the ones just described and their re�ections with respect to the imaginary axis.At p = 0, there is no u dependence, so the u integral is trivial, the only nontrivialintegration variable being ks. The poles relevant to the top pinching occurring in the left�gure 7 are
1

k0 − p0 + Ω∗

M (k)

1

k0 − ΩM(k)
, (3.1)while those relevant to the bottom pinching give the complex conjugate of this expression.The pinching occurs when k0 is such that the locations of the two poles coincide, whichgives the pinching equation

p0 =
√

k2
s + iM2 +

√

k2
s − iM2, (3.2)solved by

k2
s =

(p0)4 − 4M4

4(p0)2
. (3.3)The poles relevant to the pinching occurring in the right �gure 7 are

1

k0 − p0 + ΩM(k)

1

k0 − ΩM (k)
.They give the pinching equations

p0 = 2
√

k2
s + iM2, (3.4)which are solved by

k2
s =

(p0)2

4
− iM2. (3.5)We denote the ks integration path by Γk. By default, we expect it to be the positivereal axis, but in a moment we will discover that we must deform it to include complexvalues.When ks is real and positive, the solution of (3.2) exists for p2 real and larger than

2M2, while the solution of (3.4) exists when p2 − 4iM2 is real and larger than zero. Thus,the integral in J (p) has the LW branch cuts shown in �g. 8 and symmetric ones withrespect to the imaginary axis. The middle branch point corresponds to the LW threshold
p2 = 2M2, while the other two branch points correspond to the LW thresholds p2 = 4iM2and p2 = −4iM2. We have not shown the branch cuts associated with the standardpinching and the mixed LW pinching. When we vary p0 across a branch cut of �g. 8,a pole ν of the ks integrand crosses the ks integration path Γk (which means that the10
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Figure 8: Branch cuts due to the Lee-Wick pinching at p = 0imaginary part of the pole becomes zero, while its real part stays positive), so the function
J (p) is not analytic in that point.For example, the right-hand side of (3.3) has vanishing imaginary part and positive realpart for x >

√
2M , y = 0, where x ≡ Re[p0], y ≡ Im[p0]. This gives the middle branch cutof �g. 8, which starts from p0 =

√
2M . A mirror branch cut is obtained by re�ecting withrespect to the imaginary axis.On the other hand, the right-hand side of (3.5) has vanishing imaginary part andpositive real part when

xy = 2M2, x2
> y2. (3.6)This gives the branch cut shown in the �rst quadrant of �g. 8, which starts from p0 =√

2M(1 + i), and a symmetric branch cut in the third quadrant. The complex conjugateLW pinching gives the branch cut shown in the fourth quadrant of �g. 8, with branchpoint p0 = √
2M(1− i), and a symmetric branch cut in the second quadrant.So far, we have described what happens when Γk is not deformed. We have seen thatin that case certain poles ν of the integrand cross Γk when p0 crosses the cuts of �g. 8.There, the function J (p) is not analytic. This is what we naturally obtain, for example,if we make the integration numerically, since a generic program of numerical integrationdoes not know how to analytically deform the integration paths.If we want to turn J (p) into a function that is analytic in a subdomainO that intersectsthe branch cuts of �g. 8, we have to move those branch cuts away from O. This is doneby deforming Γk when the poles ν approach it, so as to prevent ν from crossing Γk in O,and make the crossing occur at di�erent values of p0. Or, we can keep the integration path

Γk rigid, but add or subtract (depending on the direction of motion of ν) the residues of11
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Figure 9: Analytic deformation of the branch cutsthe moving poles ν after the crossing. For example, in the equal mass case m1 = m2 = m,it is easy to check that analyticity on the real axis above the LW threshold p2 = 2M2 ise�ectively restored by the replacement
J (p) → J (p)− 1

16π

M4

m4 +M4

√

1− 4M4

(p2)2
θ−(p

2 − 2M2),when p0 crosses the real axis above √
2M from the upper half plane in the �rst quadrant(or below −

√
2M from the lower half plane in the third quadrant), where θ−(x) = 1 for

Re[x] > 0, Im[x] < 0 and θ−(x) = 0 in all other cases. In both sides of this replacementthe integration path Γk is the positive real axis.Deforming the cuts with this procedure, we may obtain, for example, �g. 9. Now theamplitude M(p) = −iλ2J (p)/2 is mathematically well de�ned on the real axis, but it hasa nontrivial imaginary part for p0 real and such that (p0)2 > 2M2, which violates unitarity.To preserve unitarity, we must keep the branch cuts symmetric with respect to the realaxis. At p = 0 this implies that a branch cut is necessarily on the real axis, which makesthe amplitude ill de�ned there.3.2 LW pinching at nonzero external space momentumAt p 6= 0 several interesting phenomena occur, which eventually lead to the solution of theproblem of properly handling the LW pinching. The pinching equations (3.2) and (3.4)become
p0 =

√
k2 + iM2 +

√

(k− p)2 − iM2, p0 =
√
k2 + iM2 +

√

(k− p)2 + iM2, (3.7)12
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Figure 10: Solutions of the Lee-Wick pinching conditions at p 6= 0respectively, plus their complex conjugates. Keeping p �xed, the solutions �ll extendedsurfaces, shown in �g. 10. The �rst picture is obtained for smaller values of |p|, the secondpicture for larger values.Since the right-hand sides of (3.7) now depend on two parameters, ks and u, the linesof �g. 8 have enlarged into regions Ãi of nonvanishing measure. Let Ã0 denote the regionthat contains the imaginary axis, which we call main region, and ÃP the one that containsthe point P , located at p0 =
√

2M2 + p2 ≡ EP . Such a point corresponds to the LWthreshold p2 = 2M2. Finally, we call Ã′

P the region symmetric to ÃP with respect to theimaginary axis. The regions Ãi other than Ã0 collect the values of p0 that satisfy theequations (3.7) for real k. There, J (p) gives nonanalytic, Lorentz violating results, if the
k integral is performed on its natural, real domain. Now we give details on these issuesand later explain how Lorentz invariance and analyticity are recovered.The curve γ is the boundary of the region ÃP . It does not cross the real axis in P , butin the point P ′, which has energy

p0 =

√

p2

2
+

√

(p2)2

4
+ 4M4 ≡ EP ′ (3.8)and satis�es √2M < EP ′ < EP . Clearly, Lorentz invariance is violated, because P ′ and γhave no Lorentz invariant meaning. This fact has been noticed by Nakanishi in ref. [7].The intuitive reason is that, as shown in �g. 2, the loop energy is not everywhere real,so, if we want Lorentz invariance, the loop momentum cannot be everywhere real. Saiddi�erently, if we want to restore Lorentz invariance working at p 6= 0, we must deformthe k integration domain to include complex values, till the regions Ãi are squeezed backto Lorentz invariant lines (i.e. solutions of Lorentz invariant conditions), like those of �g.13
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8. In particular, the region ÃP must be turned into the half line OP that corresponds to
p0 real located above the LW threshold, i.e. p0 > EP . During the deformation process wecan keep the deformed �gure 10 symmetric with respect to the real axis. To achieve thisgoal, it is su�cient to separate the contributions of the poles of each LW pair and deformthe k integration domains in complex conjugate ways in the two cases.Below we also show that when Lorentz invariance is violated (restored), analyticity isalso violated (restored).3.3 Lorentz invariance and analyticity above the LW thresholdNow we study the amplitude in OP , its Lorentz invariance and analyticity. It is convenientto separate the contributions of the physical poles from the ones of the LW poles by writingthe propagator (2.1) as

iD0(p
2, m2, ε) + iDLW(p2, m2), (3.9)where

D0(p
2, m2, ε) =

M4

M4 +m4

1

p2 −m2 + iε
, DLW(p2, m2) = − M4

M4 +m4

p2 +m2

(p2)2 +M4
.To simplify these expressions, we have replaced m2 − iε with m2 where allowed.We just need to focus on the contribution

JLW(p) =

∫

dDk

(2π)D
DLW(k2, m2

1)DLW((k − p)2, m2
2) (3.10)to the bubble loop integral J (p), because for p real it is the only one interested by the LWpinching. Every other contribution admits an analytic Wick rotation.We integrate on k0 by means of the residue theorem, as usual, and assume that k isintegrated on its natural real domain. Then, the function JLW(p) is analytic and Lorentzinvariant in the main region Ã0, because the Wick rotation is analytic there. It is neitheranalytic nor Lorentz invariant inside ÃP . Nevertheless, in the next section we prove that

JLW(p) is continuous everywhere if p 6= 0. We denote the function JLW(p) restricted to
Ã0 by J 0LW(p) and the same function restricted to ÃP by J PLW(p).When we deform the k integration domain, JLW(p) changes into some new function
J defLW(p), which depends on the deformation. Denote the deformed regions Ã0 and ÃP by
Ãdef

0 and Ãdef
P , respectively.The function J defLW(p) is analytic in Ãdef

0 and coincides with J 0LW(p) in Ã0 ∩ Ãdef
0 . More-over, as shown in the next section, it is continuous everywhere. When the domain deforma-tion is �nalized, i.e. the surfaces of �g. 10 are turned into the desired lines (in particular,14
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Figure 11: De�nitions of J 0+LW(p) and J 0−LW(p)

ÃP is squeezed onto OP ), J defLW(p) gives the �nal outcome to be assigned to the integral(3.10) in OP , which we denote by J >LW(p).We argue that
J >LW(p) =

1

2

[

J 0+LW(p) + J 0−LW(p)
]

, (3.11)where the functions J 0±LW(p) are de�ned as follows. Start from the function J 0LW(p) in Ã0,which we know to be analytic. We can analytically continue J 0LW(p) to OP either from thehalf plane Im[p0] > 0 or from the half plane Im[p0] < 0, as shown in �g. 11. These twopossibilities give J 0+LW(p) and J 0−LW(p), respectively.A number of arguments and checks, which we collect in the next section and in sec-tion 6, suggest that formula (3.11) is correct for every diagram. Alternatively, we cantake the right-hand side of (3.11) as the very de�nition of J >LW(p), bypassing the domaindeformation described in the previous subsection.The continuations that de�ne J 0±LW(p) in OP can be stretched to neighborhoods of OPabove P , so both functions J 0±LW(p) are analytic in such neighborhoods. Moreover, theyare Lorentz invariant, because they are obtained from J 0LW(p), which is Lorentz invariant.Thus, formula (3.11) ensures that J >LW(p) is analytic and Lorentz invariant in a neighbor-hood of the real axis above the LW threshold.The function JLW(p) is purely imaginary on the real axis, because the integrand and the
k integration domain are real. Indeed, when we apply the residue theorem to integrate on
k0, we pick pairs of complex conjugate poles and get an overall factor i. Thus, J 0LW(p) =

−[J 0LW(p∗)]∗, which implies J 0−LW(p) = −[J 0+LW(p∗)]∗. Since the contributions due to the15
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Figure 12: Final analytic regions Aipoles of each LW pair are interested by complex conjugate deformations of the respective
k integration domains, J defLW(p) obeys similar relations thoughout the deformation. Then,
J >LW(p) is purely imaginary in OP and so is the right-hand side of (3.11). The amplitude
M(p) = −iλ2J (p)/2 satis�es unitarity, because the LW contributions do not a�ect itsimaginary part on the real axis. More details about unitarity can be found in ref. [12].It may be helpful to analytically continue the result from the mentioned neighborhoodsto larger regions. Focusing on the three regions that have nontrivial intersections withthe real axis, in the end we may get, for example, a �nal �gure like �g. 12 plus itssymmetrization with respect to the imaginary axis. We see that the complex plane isdivided into the disjoint regions A0, AP and A′

P , which are originated by the initial regions
Ã0, ÃP and Ã′

P through the deformation process described previously.Note that formula (3.11) allows us to �nd J >LW(p) without e�ectively going throughthe domain deformation process (which is practically hard to implement): it is su�cientto decompose the propagators as in formula (3.9), isolate the contributions interested bythe LW pinching, analytically continue them from the main region Ã0 to OP in the twopossible ways and �nally average the results. As said, formula (3.11) could also be takenas the de�nition of the function J >LW(p) in OP .To summarize, the integral J (p) is ill de�ned at p = 0, but it can be worked outfrom p 6= 0, without the need of ad hoc prescriptions. We have derived the results in thecase of the bubble diagram, but the speci�city of that diagram never really enters, so weexpect that the conclusions hold for every diagram. More comments on this are containedin section 6. An explicit check of the result (3.11) is given in the next section [see thecomments around formula (4.9)].
16
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4 Calculation around the LW pinchingIn this section we illustrate the calculations in the presence of the LW pinching, prove thecontinuity of JLW(p) and J defLW(p) and provide arguments and checks in favor of formula(3.11). For de�niteness, we assume to work in more than two spacetime dimensions.We focus on the pinching depicted in the left �gure 7. The k integral has potentialsingularities of the form 1/D0 and 1/D∗

0, where
D0 = p0 − ΩM(k)− Ω∗

M (k− p). (4.1)The top pinching occurs for D0 = 0, i.e.
p0 =

√
k2 + iM2 +

√

(k− p)2 − iM2, (4.2)while the bottom pinching occurs for D∗

0 = 0. The conditions are complex for p 6= 0, sothey split into two real conditions.We want to study J (p) above the LW threshold, so we take a real p0 >
√

p2 + 2M2.With a real loop space momentum k, the solution of (4.2) is a circle, equal to the intersec-tion between a sphere and a plane, given by
k2 =

(p0)4 − 4M4

4(p0)2
, p2 = 2p · k. (4.3)If the external energy p0 is complex, the analysis becomes more involved, but for ourpurposes it is su�cient to focus on the values of p0 that are close to the real axis. Thiscan be achieved by making the substitution p0 → p0eiϕ, with ϕ small, after which we cankeep p0 real. The denominator becomes

Dϕ = p0eiϕ − ΩM (k)− Ω∗

M (k− p).To simplify the formulas, we expand Dϕ around the solution (4.3) by means of the changeof variables
ks =

σ−

2p0
+ τ

σ2
+

2σ−(p0)2
+ η

psσ
2
+

4σ−M2
, u =

ps
2ks

+ η
σ2
+

2σ−M2
, (4.4)where σ± ≡

√

(p0)4 ± 4M4, ps ≡ |p| and u = cos θ, θ being the angle between the vectors
p and k. The �uctuations around the solutions (4.3) are parametrized by τ and η. Theintegrand of J (p) is proportional to

dD−1k

Dϕ
→ − 2π(D−2)/2

Γ
(

D
2
− 1

)

kD−2
s (1− u2)(D−4)/2dksdu

τ − i(p0ϕ+ psη)
, (4.5)17
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where the arrow means that we have integrated on all the angles besides θ. We have alsoexpanded the denominator to the �rst order in ϕ, τ and η.We see that as long as either ϕ or ps are di�erent from zero, the potential singularityat Dϕ = 0 is integrable. In particular, if we keep ps 6= 0 and reach ϕ = 0, we obtain
dD−1k

D0

→ − 2π(D−2)/2

Γ
(

D
2
− 1

)

σ4
+σ

D−4
−

(2p0)DM2
(1− u2)(D−4)/2 dτdη

τ − ipsη
. (4.6)It is interesting to study the limit ps → 0 of this expression, which gives

− 4π(D−2)/2

Γ
(

D
2
− 1

)

σ2
+σ

D−3
−

(2p0)D
(1− u2)(D−4)/2dτdu

[

P
(

1

τ

)

+ iπsgn(u)δ(τ)

]

, (4.7)where P denotes the principal value and sgn is the sign function. We learn that in thiscase ps provides the prescription for handling the integral. Note that at ps = 0 no udependence survives in the integrand, besides the sign function of formula (4.7) and thefactor (1 − u2)(D−4)/2 coming from the integration measure. If we perform the simple uintegration, we �nally get
− 4π(D−1)/2

Γ
(

D−1
2

)

σ2
+σ

D−3
−

(2p0)D
dτP

(

1

τ

)

. (4.8)Also note that in three and higher dimensions there is no singularity for σ− → 0+.Formula (4.6), applied to JLW(p) at ps 6= 0, shows that JLW(p) is continuous everywhereon the complex p0 plane, as anticipated in the previous section. We have also checked thecontinuity of JLW(p) numerically, by means of a computer program.If we use formula (4.8) in JLW(p), we can work out the function J >LW(p) for ps → 0.Indeed, having set ϕ = 0 we have placed ourselves in OP ⊂ ÃP . This allows us to evaluatethe integral JLW(p) there at ps 6= 0. Then, the limit ps → 0 squeezes the region ÃPonto OP and so gives J >LW(p). Here, it is unnecessary to actually perform the domaindeformation, because the limit ps → 0 provides an equivalent e�ect.Nowe we can check formula (3.11), proceeding as follows. We study the singularity
1/Dϕ again, but �rst set ps = 0 at nonzero ϕ and then send ϕ to zero. By formula (4.5),the denominator τ − ipsη of (4.6) is replaced by τ − ip0ϕ, so, after integrating on u, we�nd

− 4π(D−1)/2

Γ
(

D−1
2

)

σ2
+σ

D−3
−

(2p0)D
dτ

τ − ip0ϕ
−→
ϕ→0±

−4π(D−1)/2

Γ
(

D−1
2

)

σ2
+σ

D−3
−

(2p0)D
dτ

[

P
(

1

τ

)

± iπδ(τ)

]

. (4.9)These expressions are also regular, but do not coincide with (4.8).18
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Observe that the result (4.9) is obtained by �rst squeezing the region ÃP onto OP(which is a consequence of letting ps → 0 �rst) and then approaching the real axis from
Im[p0] > 0 (ϕ → 0+) or Im[p0] < 0 (ϕ → 0−). The two cases give J 0+LW(p) and J 0−LW(p),respectively. If we average the two results (4.9), we obtain (4.8), in agreement with formula(3.11).We expect that the key results just found continue to hold through the domain defor-mation that de�nes the amplitude in OP at p 6= 0. For example, the basic reason why
JLW(p) is continuous everywhere is that the denominator Dϕ is complex, which makesthe singularity integrable. However, the denominator remains complex during the domaindeformation, so J defLW(p) is also continuous. Moreover, the check of formula (4.2) providedabove, which works at ps → 0, captures the essential features that also apply at p 6= 0,when the domain deformation is taken into account. Indeed, assume that the deformedregion Ãdef

P is a thin strip around OP . Let p̃s denote the length of the short edge of thestrip, so that the domain deformation is �nalized (Ãdef
P → OP ) when p̃s → 0. On generalgrounds, the potential singularity of the integral is always expected to be of the form

∼ dτdη

τ − i(p0ϕ+ p̃sη)
, (4.10)where the external momentum is still written as p0eiϕ, with p0 real and ϕ small, while τand η are two real variables that parametrize the �uctuations around the singular pointat ϕ = 0 (τ being parallel to the long edge of the strip and η being parallel to the shortedge). Repeating the arguments above with the help of (4.10), we still get formula (3.11).The results just derived and formula (3.11) are expected to apply to the LW pinchingof any diagram, because they are not tied to the peculiarities to the bubble diagram. Seesection 6 for more details on this.4.1 Comparison with the CLOP and other prescriptionsWe have seen that the theory is intrinsically equipped with the right recipe to handle theLW pinching. This means that any arti�cial prescription can potentially lead to wrongresults. Now we classify the whole set of unitary prescriptions, which includes the CLOPone, and compare them with the results predicted by the formulation of this paper. Forde�niteness, we work in four dimensions.Consider the integrand of the loop integral (2.3) at p = 0. We begin with the toppinching that appears in the left �gure 7, which is due to the poles (3.1). By means of theexpansion

ks =
σ−

2p0
+ τ

Mp0

σ−

, (4.11)19
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we see that the integrand of J (p) behaves as
i

(8π)2
σ−

(p0)2
M4

(M2 + im2
1)(M

2 − im2
2)

dτ

τ
(4.12)around the singularity τ = 0.We know that the formulation of this paper removes the singularity because, workingat nonvanishing p and letting p tend to zero afterwards, (4.12) is replaced by

i

(8π)2
σ−

(p0)2
M4

(M2 + im2
1)(M

2 − im2
2)
P
(

1

τ

)

dτ. (4.13)More generally, we may have
i

(8π)2
σ−

(p0)2
M4

(M2 + im2
1)(M

2 − im2
2)

[

P
(

1

τ

)

+ iaδ(τ)

]

dτ, (4.14)where a is an arbitrary real constant.The LW poles come in conjugate pairs, so the pinching just considered is accompaniedby the complex conjugate one, which occurs when the residue calculated in k0 = p0−ΩM(k)hits the LW pole located in k0 = Ω∗

M(k). The contribution is minus the complex conjugateof (4.14), because the i factor that accompanies the residue does not get conjugated. Thetotal gives
2i

(8π)2
σ−

(p0)2
M4

(M4 +m4
1)(M

4 +m4
2)

[

(M4 +m2
1m

2
2)P

(

1

τ

)

+ aM2(m2
1 −m2

2)δ(τ)

]

dτ.Again, the contribution to J (p) is regular and purely imaginary. In particular, it does nota�ect the imaginary part of the amplitude M(p) = −iλ2J (p)/2. This result proves thatthe prescription (4.14) is consistent with perturbative unitarity for arbitrary a. However,the loop integralJ (p) does depend on a, at least when the two physical masses are di�erent.This proves that no prescription with nonvanishing a is consistent with our formulation,which predicts a = 0.The CLOP prescription is ambiguous and gives a = ±π. This result can be proved byreplacing the LW scale M with M ′ = M + δ in the second propagator of (2.3). Modifyingthe expansion (4.11) into
ks =

σ−

2p0
+ τ

Mp0

σ−

− 2δ
M3

p0σ−

,the integrand J (p) behaves as
i

(8π)2
σ−

(p0)2
iM4

(M2 + im2
1)(M

2 − im2
2)

dτ

τ − iδ
, (4.15)20
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around the top pinching of the left �gure 7. This formula is equivalent to (4.14) with
a = πsgn(M ′ −M).The result is ambiguous, because it depends on whether δ is chosen to be positive ornegative and there is no way to decide whether M ′ must be smaller thanM or the contrary.In the next section we plot the ambiguity numerically.Before this result, ambiguities due to the CLOP prescription were expected only inmore complicated diagrams [3]. It was understood that maybe it was possible to resolvethem by means of further prescriptions. The ambiguity we have just found is presentalready at one loop and in one of the simplest Feynman diagrams. However, it occurs onlywhen m1 6= m2, which explains why it was not noticed before. For example, the resultsof ref. [8] are correct, since they are made in the case m1 = m2 = m, where the CLOPprescription gives the same result as our formulation.If we want to make the new ambiguity disappear, we can supplement the CLOP pre-scription by an average over the two possibilities a = ±π, which e�ectively gives a = 0 andagrees with our result (4.13). This makes the amended prescription even more arti�cialthan the original CLOP approach and there is still no guarantee that analogous way outscan be found in more complicated situations. For these reasons, we think that ad hocapproaches like the CLOP one should be dropped in favor of the new formulation of thispaper, which does not have such problems.5 Complete bubble diagramIn this section, we complete the calculation of the bubble diagram. The main goal is todescribe what happens around the LW threshold. Since the threshold associated withthe physical poles is not the main focus of the calculation, we avoid the superpositionbetween the physical threshold and the LW one by assuming that the masses m1 and m2are su�ciently large. For concreteness, we take m1, m2 > 3M .Another simplifying choice is to make the calculation at p = 0 and resolve the singu-larity with the help of formula (4.8). We know that this procedure is justi�ed by startingfrom nonvanishing p, where the LW pinching is properly handled, and taking the limit
p → 0 afterwards.Setting M = 1 and m1 = m2 = 3, the imaginary part of J (p) as a function of a real p0has the behavior of �g. 13. The real part vanishes in the range shown, in agreement withunitarity. We see that the imaginary part is well de�ned and continuous, but not analytic.The nonanalyticity that is visible at p2 = 2M2 is the remnant of the LW pinching. If innature some physical processes are described by a LW theory, the LW scale M is the key21
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Figure 13: Plot of Im[J (p)] around the LW pinchingphysical quantity signaling the new physics. A shape like the one of �g. 13 may be helpfulto determine the magnitude of M experimentally.The formulation of the theory by nonanalytically Wick rotating its Euclidean versiongives an unambiguous answer and does not need ad hoc prescriptions. The CLOP pre-scription gives the same result, in the case just considered. As explained in the previoussection, we can appreciate the intrinsic ambiguity of the CLOP prescription and the di�er-ences with the predictions of our formulation by studying the bubble diagram with unequalmasses. For example, we compare the case m1 = 3, m2 = 5 to the case m1 = m2 = 4.Using the CLOP prescription, we take M = 1 in the �rst propagator of formula (2.3)and M = 1 + δ in the second propagator, working at p = 0. Then we integrate J (p)numerically for smaller and smaller values of |δ|, till, say, |δ| = 10−3. We study both
δ = −10−3 and δ = 10−3.On the other hand, following the formulation proposed here, we set M = 1 in bothpropagators, but keep ps = |p| di�erent from zero. Then, we integrate numerically forsmaller and smaller values of ps till ps = 10−3.Collecting the results of these calculations, the imaginary part of J (p) gives the plotsof �g. 14, while the real part still vanishes. The �rst plot refers to the case m1 = 3, m2 = 5,while the second plot refers to the case m1 = m2 = 4. Let us describe the �rst plot indetail. Below the LW threshold, the graph is unique, which means that our formulationand the CLOP prescription give the same result. Above the LW threshold, we see threegraphs. The middle graph is the one predicted by our formulation, while the upper andlower graphs are those predicted by the CLOP prescription, with δ = −10−3 and δ = 10−3,respectively.Although the match is very precise in the equal mass case (second �gure), there is a22
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M or M ′ < M . The average of the two CLOP graphs coincides with the graph predictedby our formulation.If we really want to retrieve our result from a procedure where the propagators offormula (2.3) have two di�erent LW scales M and M ′, as in the CLOP prescription, weactually can, but in that case the CLOP prescription becomes redundant. Instead ofsetting ps = 0 and then letting M ′ tend to M , we must start from ps 6= 0, let M ′ approach
M while ps 6= 0, work in a suitable region Ã>, perform the domain deformation and onlyat the end, if we want, let ps tend to zero.In more detail, the region ÃP contained in the curve γ of �g. 10 splits into two regions
Ã+

P and Ã−

P , when M ′ = 1 + δ is su�ciently di�erent from M (or ps is su�ciently large).We show the new regions in �g. 15, where we have taken ps = 10−3 and M = 1. In theleft picture δ = 5 · 10−3, while in the right picture δ = 10−4.

Figure 15: Areas of LW pinching when M ′ 6= M23
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When δ is su�ciently large, the real axis has no intersection with Ã+

P and Ã−

P , but when
δ becomes smaller, the region Ã> ≡ Ã+

P ∩ Ã−

P is nonempty. What the CLOP prescriptionrequires is to cover the entire real axis by analytic continuation from below (i.e. from theregion that contains the imaginary axis) and let δ tend to zero at the end. What ourformulation requires, instead, is to reach the portion of the real axis that is located abovethe LW threshold P by working in Ã>, perform the domain deformation that squeezes Ã>onto the real axis, let δ tend to zero and �nally analytically continue the result to reach
P from above. This is the crucial di�erence between the two formulations, which explainsthe discrepancy shown in �g. 14.6 More complicated diagramsIn this section, we explain how the arguments of the previous sections can be extendedto more complicated diagrams. One-loop diagrams have a unique loop momentum, whilethe independent external momenta can be arbitrarily many. The pure LW pinchings aresimilar to the ones of the bubble diagram. They occur between the right LW poles of anypropagator and the left LW poles of any other propagator, as described by �gure 6. Themixed LW pinching cannot occur for real external momenta.At higher loops the pinching is also analogous to the one we are accustomed to incommon theories. There, if the propagators of the internal legs of the diagram have masses
mi, the pinchings lead to thresholds of the form p2 = (mi1 +mi2 +mi3 + · · · )2, where p isa sum of incoming momenta. In the case of the LW pinching, the formulas that give thethresholds are basically the same, with the di�erence that some masses mi are replacedby the complex masses M± = (1 ± i)M/

√
2 associated with the LW scales. The pinchingconditions are always of the form p0 = positive sum of (possibly complex) frequencies andthe thresholds are

p2 =

[

(n+ + n−)
M√
2
+ i(n+ − n−)

M√
2
+mi1 +mi2 +mi3 + · · ·

]2

,where the integers n+ and n− count how many times the masses M+ and M− appear,respectively. The number of thresholds grows with the number of loops and so does thenumber of disjoint regions Ãi and Ai. The thresholds that are relevant to the calculationsof the physical amplitudes are those that are located on the real axis, which are
p2 = (

√
2nM +mi1 +mi2 +mi3 + · · · )2,where n = n+ = n−. 24
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We expect that the arguments of sections 3 and 4 for the calculation around the LWpinching work in any diagram. In a generic Lorentz frame, the regions Ãi are enlarged.Lorentz invariance is violated and the integration domain on the loop space momentamust be deformed to recover it. Consider the behavior of a loop integral around some LWpinching. During the domain deformation, the deformed surface Ãdef
P eventually becomesa thin strip almost squeezed onto the real axis above the LW threshold P . If τ denotes acoordinate for the long edge of the strip and η a coordinate for the perpendicular edge, while

p̃s measures the length of the short edge, the denominator of (4.10) appears to capture themost general behavior we can meet (p0 being replaced by p0eiϕ, ϕ small). Then, formula(3.11) is also expected to hold, as well as Lorentz invariance and analyticity above the LWthresholds.The analytic regions Ai are determined as follows. Working in a generic Lorentz frame,we �nd the regions Ãi by integrating on the natural, real domains of the loop spacemomenta [see �g. 10]. Decomposing the propagators as in formula (3.9), we isolate thecontributions JLW(p) interested by the LW pinching. For each of them, we compute JLW(p)in the main region Ã0, which is the one that contains the imaginary axis. Then weanalytically continue the result �from below�, which means from smaller to larger valuesof the squared external momentum p2, till we reach a LW threshold P . We proceed withthe continuation above P , but here we �nd two di�erent functions, J 0+LW(p) and J 0−LW(p),depending on whether we continue from the half plane with Im[p0] > 0 or the one with
Im[p0] < 0. By formula (3.11), the �nal outcome J >LW(p) to be assigned to JLW(p) above
P , is the average of J 0+LW(p) and J 0−LW(p). It is Lorentz invariant and can be analyticallyextended from the real axis to a region AP whose boundary intersects the real axis onlyin P (see �g. 12). Following these directions, we obtain J >LW(p) without having to gothrough the domain deformation process described in section 3. The procedure must beapplied to every LW threshold P and can be generalized to regions that are placed abovemore LW thresholds at the same time. The �nal main region A0 is the complement of
∪PAP .7 ConclusionsThe Lee-Wick models are higher-derivative theories that are claimed to reconcile renor-malizability and unitarity in a very nontrivial way. However, several aspects of theirformulation remained unclear. In this paper, we have provided a new formulation of themodels that overcomes the major di�culties, by de�ning them as nonanalytically Wick ro-tated Euclidean theories. Working in a generic Lorentz frame, the models are intrinsically25
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equipped with the right recipe to treat the pinchings of the Lee-Wick poles, with no needof external ad hoc prescriptions. The complex energy plane is divided into disconnectedanalytic regions, which are related to one another by a well de�ned, albeit nonanalyticprocedure.The nonanalytic behaviors of the amplitudes may have interesting phenomenologicalconsequences, which may facilitate the measurements of some key physical constants ofthe theories, such as the scales associated with the higher-derivative terms.AcknowledgmentsWe are grateful to U.G. Aglietti and L. Bracci for useful discussions.References[1] T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl.Phys. B 9 (1969) 209.[2] T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics, Phys. Rev. D 2(1970) 1033.[3] R.E. Cutkosky, P.V. Landsho�, D.I. Olive, and J.C. Polkinghorne, A non-analyticS-matrix, Nucl. Phys. B 12 (1969) 281.[4] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math.Phys. (NY) 1 (1960) 429;M. Veltman, Unitarity and causality in a renormalizable �eld theory with unstableparticles, Physica 29 (1963) 186;G. 't Hooft, Renormalization of massless Yang-Mills �elds, Nucl. Phys. B 33 (1971)173;G. 't Hooft, Renormalizable Lagrangians for massive Yang-Mills �elds, Nucl. Phys. B35 (1971) 167.[5] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16(1977) 953;E. S. Fradkin and A. A. Tseytlin, Renormalizable asymptotically free quantum theoryof gravity, Nucl. Phys. B 201 (1982) 469.26
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