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Damiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italyand INFN, Sezione di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italydamiano.anselmi@unipi.it

AbstractThe cutting equations are diagrammatic identities that are used to prove perturbativeunitarity in quantum �eld theory. In this paper, we derive algebraic, upgraded versions ofthem. Di�erently from the diagrammatic versions, the algebraic identities also holds forpropagators with arbitrary, nonvanishing widths. In particular, the cut propagators do notneed to vanish o� shell. The new approach provides a framework to address unsolved prob-lems of perturbative quantum �eld theory and a tool to investigate perturbative unitarityin higher-derivative theories that are relevant to the problem of quantum gravity, such asthe Lee-Wick models and the fakeon models.
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1 IntroductionPerturbative unitarity in quantum �eld theory is the statement that the scattering matrix
S is unitary at the perturbative level. This property can be rephrased as a set of identitiesobeyed by the scattering amplitudes. At the diagrammatic level, it amounts to a set of cut-ting equations [1], which involve a diagram G together with the variants obtained by cutting
G in various ways. In this paper, we show that perturbative unitarity can be conceptuallyreduced to a set of polynomial equations, which we call algebraic cutting equations. Theyare actually more general than what is strictly needed for the proof of perturbative unitar-ity, which is why we think that they deserve consideration on their own as mathematicalproperties.The usual proof of perturbative unitarity [1, 2, 3] proceeds in four steps, which are thederivations of: (i) a diagrammatic equation in coordinate space known as the largest timeequation, (ii) the cutting equations properly known (henceforth called diagrammatic cuttingequations, to distinguish them from the algebraic ones), (iii) the pseudounitarity equation,and (iv) the unitarity equation SS† = 1. In this paper, we concentrate on a new, algebraicapproach that allows us to jump directly to point (ii). We will not have much to say aboutthe other steps just mentioned, which remain unmodi�ed.In particular, the projection (iii) → (iv) of the pseudounitarity equation onto the uni-tarity equation is necessary only in the presence of local symmetries. Its role is to showthat the temporal and longitudinal components of the gauge �elds are compensated by theFaddeev-Popov ghosts. The projection can be handled with the methods of refs. [2] and [3]in gauge theories and those of ref. [4] in gauge theories and gravity. The implication (ii) →(iii) is straightforward, since the pseudounitarity equation is just a collection of the cuttingequations. The implication (i) → (ii) follows from the Fourier transform of the largest timeequation plus the requirement that positive energies propagate forward in time and negativeenergies propagate backward in time. In the approach we o�er here, it is a particular caseof the general theorem we prove.In this paper, we replace the step (i) with a set of algebraic identities that allow us togain a deeper understanding into the mathematical aspects of perturbative unitarity, andmake various manipulations more e�ciently. Moreover, the algebraic cutting equations aremore general than the usual ones. Indeed, they also hold for arbitrary, nonvanishing widths,since the cut propagators do not need to be distributions that are supported only on shell.The basic concept we need to build the identities is the concept of polar number, whichis a variable equipped with a polarity. By convention, the polarities are denoted by + and
−. The polarity is an abstract marking that allows us to divide the set of variables we2



16A3Renor
m

use into two subsets: the subset made of the variables with positive polarity and the subsetmade of the variables with negative polarity. In typical applications, the polar numbers havecomplex values and the positive/negative polarity can denote their locations inside/outsidesome closed curve γ on the complex plane or the Riemann sphere. If the polar number isa function of another variable (typically an energy E) and has a singularity for a speci�cvalue of E, then the polarity may refer to the location of the singularity inside/outside aclosed curve γ.Given an oriented Feynman diagram G, we give rules to associate one polar number witheach internal leg. The product of such polar numbers is called polar monomial. A polarizedmonomial is a polar monomial where at least one loop is polarized, that is to say each leg ofthe loop is associated with a polar number whose polarity agrees with the leg orientation.The theorem we prove states that certain polynomials of polar numbers are equal to sumsof polarized monomials.In the applications to physics, the legs of the diagrams are oriented according to energy�ows. The polar numbers are �half propagators� (the propagator being the sum of two polarnumbers). They depend on a momentum and have a pole for some complex value of theenergy. The polarity is positive or negative according to whether the pole is located belowor above the real axis of the complex energy plane. The theorem singles out the polarizedmonomials, which do not contribute to the diagrammatic cutting equations. The reasonis that polarized loops give zero when they are integrated on the loop momentum. Thealgebraic identities thus lead to the diagrammatic cutting equations in a straightforwardway.The approach of this paper o�ers a clearer understanding of perturbative unitarity, byuncovering its purely algebraic aspects. As we show in section 8, it also helps organizingcomputations in more practical ways. Moreover, the generalized versions that hold forarbitrary widths allow us to upgrade the formulation of unitarity to include the e�ects ofradiative corrections, which typically generate nonvanishing widths at one and higher loops.Several aspects of this inclusion have yet to be clari�ed [5].Finally, the algebraic cutting equations provide the best framework to investigate per-turbative unitarity in theories that have not been reached so far by the standard techniques.Examples are the Lee-Wick models [6], which do involve propagators with nonvanishingwidths. They are higher-derivative theories of a special class that are claimed to reconcilerenormalizability with unitarity. The Lee-Wick models have been studied in a variety ofcontexts [7] and are expected to have important implications for quantum gravity [8, 9].They have been reformulated as nonanalytically Wick rotated Euclidean theories in ref. [10]3
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and their unitarity has been proved at one loop in ref. [11]. They admit important gener-alizations where the would-be ghosts are turned into �fakeons�, i.e. fake degrees of freedom,by means of a new quantization prescription [9]. Using the algebraic cutting equations, aproof of unitarity to all orders has been recently provided in ref. [12] for all the theoriesthat contain fakeons and physical degrees of freedom.The paper is organized as follows. In section 2 we collect the basic de�nitions. In section3 we state the main theorem, which we prove in section 4. In section 5 we give a numberof examples. Speci�cally, we use the algebraic identities to derive the diagrammatic cuttingequations of the bubble and triangle diagrams at one loop and the chestnut diagram attwo loops. We include the algebraic identities of other diagrams, up to three loops. Insection 6 we use the identities to prove the perturbative unitarity of ordinary quantum�eld theories. In section 7 we discuss some symmetries of the algebraic cutting equations.Section 8 contains the conclusions, with emphasis on the virtues of the algebraic approachwith respect to the usual approach.2 Basic de�nitionsIn this section we collect the basic de�nitions that are necessary to state the main theorem.A diagram is a set of vertices connected by lines. The lines of a diagram will be calledlegs henceforth. The diagrams we consider do not need to be planar or connected. Thevertices can be the endpoints of any number of legs, including one or two. The verticesthat are attached to a unique leg are called external. The legs they are attached to are alsocalled external. The other vertices and legs are called internal. From now on, we drop theexternal vertices and whenever we talk about vertices we mean the internal ones.Equip the internal legs of the diagrams with orientations. The de�nition of oriented legis self evident. Two legs are called adjacent if they have a vertex in common. Two adjacentlegs are said to have coherent orientations if the orientation of one leg points to the vertexin common and the orientation of the other leg points away from the vertex in common.De�nition 1 Given a diagram, a curve is a sequence {`1, . . . `n} of legs `i, such that each `iwith i > 1 is adjacent to `i−1. A loop is a closed curve, i.e. a curve {`1, . . . `n} such that `1is adjacent to `n. A curve is minimal if it contains no loop. A loop is minimal if it containsno loop apart from itself.An example of nonminimal loop is a loop that looks like an �8�.De�nition 2 A curve or a loop are oriented if the orientations of all their legs are coherent.4
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Assume that G is connected and has I internal legs and V vertices. Pick I independentreal numbers Ei, i = 1, . . . I, and call them �energies�. Assign an energy to each internal legand zero energy to each external leg. Use the orientation of a leg to de�ne the orientationof the �ow of its energy. Then, impose the energy conservation at each vertex. This is therequirement that the total energy �owing into the vertex must be equal to the total energy�owing out of the vertex. The independent conservation conditions are V − 1, because theenergies �owing into the diagram and out of it are zero by assumption. Due to this, theenergy is automatically conserved in the last vertex, once it is conserved in every othervertex. Energy conservation leaves us with I − V + 1 ≡ L arbitrary independent energies
e1, . . . eL.Proposition 1 It is possible to arrange the leg orientations and the energies e1, . . . eL, sothat the �ow of each energy de�nes an oriented minimal loop in G and each leg is associatedwith a linear combination of energies e1, . . . eL with coe�cients 0 or 1.Proof. To see this, start from the diagram G, with no leg orientations and zero energyin every leg. Assume, for the time being, that G is one-particle irreducible. Consider aminimal loop γ1 in G. Arrange the orientations of the γ1 legs so that they are coherent andadd the energy e1 to each of its legs. So doing, the loop γ1 becomes oriented. If L = 1, theconstruction stops here.Otherwise, since G is one-particle irreducible, there must exist a pair v(a), v(b) of γ1vertices that are connected by a minimal curve Γab which has no legs and no other vertexin common with γ1. We distinguish two cases: v(a) 6= v(b) and v(a) = v(b). If v(a) 6= v(b), v(a)and v(a) are connected both by Γab and by two portions ∆ab and ∆′

ab of γ1. Pick the portionof your choice, say ∆ab. The union Γab ∪∆ab de�nes a minimal loop γ2. The orientation of
∆ab can be extended coherently to Γab, to de�ne the orientation of γ2. Once this is done,add the energy e2 to each leg of γ2. If v(a) = v(b), just pick Γab as the loop γ2 and orient itin the way you like. Then add e2 to each of its legs. If L = 2, the construction stops here.Observe that any distinct vertices v(c) and v(d) of γ1 ∪ γ2 are connected by an orientedminimal curve ∆cd contained in γ1 ∪ γ2: if they both belong to γ1 or γ2, this fact is obvious.If v(c) belongs to γ1 and v(d) belongs to γ2, it is su�cient to move along γ1 (following the γ1orientation) from v(c) to the �rst intersection between γ1 and γ2, then continue to v(d) alongthe portion of γ2 that has a coherent orientation. Clearly, such a ∆cd is a minimal curve.If L > 2, there must exist a pair of vertices v(c) and v(d) of γ1 ∪ γ2 that are connectedby a minimal curve Γcd that has no legs and no other vertex in common with γ1 ∪ γ2. If
v(c) 6= v(d), by the property shown above they are also connected by an oriented minimal5



16A3Renor
m

(a)

(e)(d)

(b) (c)

(f)Figure 1: Orientations of diagramscurve ∆cd contained in γ1 ∪ γ2. The union Γcd ∪ ∆cd of the two curves de�nes the thirdminimal loop γ3, which becomes oriented after the orientation of ∆ab is coherently extendedto the whole loop. Finally, the energy e3 is added to all the legs of γ3. If v(c) = v(d), justpick Γcd as γ3, orient it in the way you like and add e3 to each of its legs. If L = 3, theconstruction stops here.Again, any pair of distinct vertices that belong to the union γ1 ∪ γ2 ∪ γ3 are connectedby an oriented curve contained in γ1 ∪ γ2 ∪ γ3, which we can choose to be minimal. Thisallows us to iterate the construction for L > 2.It is also straightforward to extend the assignments to the one-particle reducible diagramsas well as the disconnected diagrams. This concludes the proof. �De�nition 3 A diagram is oriented if its leg orientations are compatible with the construc-tion of proposition 1. Otherwise, the diagram is jammed.We call e1, . . . eL loop energies. A diagram may admit various orientations, which giveequivalent polynomial identities. In �g. 1 we show various examples. The diagrams (a)and (c) are jammed, while (b), (d), (e) and (f) are oriented. In particular, (d), (e) and (f)are di�erent orientations of the same diagram. A diagram has precisely L oriented minimalloops. For example, (d), (e) and (f) have two oriented minimal loops.3 The theoremIn this section we state the theorem, leaving its proof to the next section.6
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= z = w = v= uFigure 2: PropagatorsLet G denote an oriented diagram and `1, . . . `I its internal legs. Let νa, a = 1, . . . V ,label the vertices of the diagram. When we want to specify that the orientation of the ithleg points from, say, the vertex νa to the vertex νb, we denote it by (νa`iνb).Build variants GM of G by marking any number of vertices. We denote the markedvertices by ν̂a. The marked diagrams have legs of types (νa`iν̂b), (ν̂a`iνb) and (ν̂a`iν̂b),besides those of type (νa`iνb), the leg orientation pointing from a to b.A polar number is a variable equipped with a polarity, denoted by + or −. Let
{σ+

i , τ
+
i , σ−

i , τ
−
i }, i = 1, . . . I, denote I quartets of polar numbers. Each quartet is asso-ciated with a leg of the diagram and is the union of a pair σ+

i , τ+i of variables with positivepolarities and a pair σ−
i , τ−i of variables with negative polarities.De�ne the propagators

zi = σ+
i + σ−

i , wi = τ+i + τ−i , ui = σ+
i + τ−i , vi = σ−

i + τ+i . (3.1)Determine the value PM of the diagram GM by means of the following �Feynman� rules. As-sign the value one to each unmarked vertex and the value −1 to each marked one. Associatepropagators with the legs of GM as follows:
(ν`iν

′)→ zi, (ν̂`iν̂
′)→ wi, (ν`iν̂

′)→ ui, (ν̂`iν
′)→ vi. (3.2)Graphically, we denote the marked vertices by means of a dot, so the propagators are thoseshown in �g. 2. Then, PM is the polynomial

PM = (−1)m
I
∏

i=1

pMi, (3.3)where pMi denotes the propagator of the ith leg `i, assigned according to the scheme (3.2),and m is the number of marked vertices.For example, the polynomials associated with the marked diagrams of �g. 3 are
z1z2, w1w2, −u1v2, −v1u2, (3.4)respectively. 7
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The set or marked diagrams includes the diagram G itself, where all the vertices areunmarked, as well as the diagram Ḡ where all the vertices are marked. The polynomials Pand P̄ associated with G and Ḡ are
P =

∏I

i=1
zi, P̄ = (−1)V

∏I

i=1
wi,respectively.The theorem is about the sum of the polynomials PM on all the ways M to mark thediagram G. Writing z, w, u and v as sums of polar numbers, according to formula (3.1), wecan expand the sum of PM as a sum of polar monomials. A polar monomial is the product ofone polar number of the set {σ+

i , τ
+
i , σ

−
i , τ

−
i } for each leg `i. A polar curve, loop or diagramis a curve, loop or diagram whose legs are equipped with polar numbers.Examples of polar monomials for the diagram G of �g. 3 are

σ+
1 σ

+
2 , σ−

1 τ
−
2 , σ+

1 σ
−
2 , σ+

1 τ
−
2 , σ−

1 τ
+
2 , (3.5)etc.De�nition 4 A polarized loop is a polar loop where adjacent legs of coherent (opposite)orientations carry polar numbers of coherent (opposite) polarities.In particular, an oriented polar loop is polarized if all its legs carry polar numbers of thesame polarity. Instead, a polarized nonoriented loop is such that the leg polarity �ips if andonly if the orientation �ips.De�nition 5 A polarized monomial is a polar monomial, associated with a diagram G,where at least one loop is polarized.Consider, for example, the diagrams of �g. 4. The oriented loops of the �rst diagram are123 and 345, while 1254 is a nonoriented loop. If we equip such loops with the polar mono-mials σ+

1 σ
+
2 τ

+
3 , σ−

3 τ
−
4 τ

−
5 and σ+

1 σ
+
2 σ

−
4 τ

−
5 , respectively, we obtain polarized loops. Examplesof polarized monomials are σ+

1 σ
+
2 τ

+
3 σ

+
4 τ

−
5 and σ+

1 σ
+
2 σ

−
3 τ

−
4 τ

−
5 . Examples of polarized loops

1

2

1

2

1

2

1

2

Figure 3: Simple marked diagrams8
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2

3

5

41

2

3

5

41Figure 4: Two-loop oriented diagramsfor the second diagram of �g. 4 are 123 with the monomial σ+
1 σ

+
2 τ

+
3 , 1254 with σ+

1 σ
+
2 τ

+
4 σ+

5and 345 with σ+
3 σ

−
4 τ

−
5 .Here is the main theorem of this paper:Theorem 1 given a diagram G, the identity

∑markings M

PM = PG (3.6)holds, where PG is a sum of polarized monomials.We can condense the theorem by saying that the sum of the marked diagrams is equalto a sum of polarized diagrams.For example, if we sum the polynomials (3.4), we can easily check the identity
z1z2 + w1w2 − u1v2 − v1u2 = (σ+

1 − τ+1 )(σ+
2 − τ+2 ) + (σ−

1 − τ−1 )(σ−
2 − τ−2 ). (3.7)Note that the right-hand side is a sum of polarized monomials. More examples are given insection 5.At the tree level, we have PG = 0. At one loop, we have the general formula

PG =
∏I

i=1
(σ+

i − τ+i ) +
∏I

i=1
(σ−

i − τ−i ), (3.8)which we leave without proof, since it is not crucial for the rest of the discussion.We can assume that the diagram G does not contain tadpoles, i.e. loops made of a singleleg that begins and ends at the same vertex. Indeed, if G contains tadpoles, the theorem istrivial, since a tadpole is an oriented loop and can obviously be written as the sum of twocontributions, each being a polar number, which is polarized by de�nition. Moreover, we canalso assume that G is connected, since the theorem extends to disconnected diagrams in anobvious way, once it is proved for connected diagrams. Finally, we can assume V > 1, sincea diagram with a single vertex has no internal leg (in which case the theorem is obvious) oris a tadpole. 9
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m Figure 5: Diagram with one external leg for each vertex4 Proof of the theoremIn this section we prove the theorem. Since formula (3.6) is a polynomial identity, if weprove it for polar numbers belonging to open sets of the complex plane, we automaticallyprove it for arbitrary polar numbers. Thus, with no loss of generality, we can assume thatthe signs of the imaginary parts of the polar numbers σ+

i , τ
+
i , σ

−
i , τ

−
i coincide with theirpolarities.LetG denote an oriented connected diagramwith I internal legs, V vertices, L = I−V +1loops and no tadpoles. Denote the internal legs by `i, i = 1, . . . I, and the vertices by νa,

a = 1, . . . V . We can assume V > 1 and equip G with loop energies e1, . . . , eL in the wayspeci�ed by proposition 1.If more external legs are attached to the same vertex, drop all of them but one. If noexternal leg is attached to a vertex, add one. So doing, each vertex is attached to oneexternal leg and the diagram G becomes a �gure like �g. 5. Note that some external legsare drawn inside the diagram, for no particular reason other than aesthetics. They couldbe prolonged at will by crossing over the internal legs, since Feynman diagrams need not beplanar.Assign propagators identically equal to one to the external legs. Then, equip eachexternal leg but the last one with an independent energy Ea, a = 1, . . . V −1, that �ows intothe diagram. By the conservation of energy, the external leg attached to the last vertex νVhas energy ∑V−1
a=1 Ea �owing out of the diagram.By the argument of section 2, if G is one-particle irreducible, each pair of vertices

{νa, νV }, a = 1, . . . V − 1, is connected by a minimal curve Γa in G that is oriented from
νa to νV . This property can be easily extended to any connected diagram G. If G isone-particle reducible, it can be viewed as a tree of one-particle irreducible subdiagrams
GA, A = 1, . . .N , and single (nonoriented) lines `A, A = 1, . . . N − 1, connecting pairs of10
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GA′s. Equip `A with the orientation that �ows towards the subdiagram G̃A that contains
νV . Then, given a pair of vertices {νa, νV }, a = 1, . . . V − 1, it is possible to connect themthrough a minimal curve Γa that is oriented from νa to νV and is equal to the union of a setof oriented minimal curves Γ′

A ⊂ GA and lines `A.Add the energy Ea to all the legs of Γa. Let Ei denote the energy of the ith internal leg
`i. By proposition 1 and the construction just described, Ei is a linear combination of theloop energies e1, . . . , eL and the external energies E1, . . . ,EV−1, with coe�cients 0 or 1.De�ne new polar numbers ζ±i and ξ±i as

ζ±i = Ei − (σ±
i )

−1, ξ±i = Ei − (τ±i )
−1. (4.1)Their polarities, speci�ed by the superscripts + and −, coincide with the signs of theirimaginary parts. We have

σ±
i (Ei) =

1

Ei − ζ±i
, τ±i (Ei) =

1

Ei − ξ±i
. (4.2)For a while, we keep ζ±i and ξ±i �xed and treat σ±

i and τ±i as functions of the energies. Insome intermediate steps we integrate over the loop energies. Then, we undo the integralto recover properties that hold at arbitrary energies. This is the strategy that leads to theproof of the theorem.Now, pick a marked diagram GM , take formula (3.3), implement the replacements (4.2)and integrate each loop energy ej along the real axis with the measure dej/(2π). This de�nesthe value of GM in energy space, which is
GM(E1, . . . ,EV−1) = (−1)m

∫ I
∏

i=1

pMi(Ei)
∏L

j=1

dej
2π

. (4.3)This integral is overall convergent, because it is well behaved at in�nity and no pole sitson the real axis. As far as the overall behavior at in�nity is concerned, observe that eachpolar number decreases like 1/e, where e collectively denotes the loop energies, so the overallbehavior of PM is 1/eI , which falls o� fast enough, since V > 1 implies I = L+V −1 > L+1.Moreover, every subintegral is overall convergent for a similar reason. Incidentally, thereason why we cannot treat diagrams that contain tadpoles is that they do not satisfy theseconditions.We move to the coordinate versions of the diagrams, by taking their Fourier transforms.The Fourier transforms of the polar numbers σ±
j and τ±j are

σ̃±
j (tj) =

∫ +∞

−∞

dEj

2π

eiEjtj

Ej − ζ±j
= ±iθ(±tj)eitjζ

±

j , τ̃±j (tj) = ±iθ(±tj)eitjξ
±

j .11
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Familiar knowledge of quantum �eld theory tells us that the coordinate version G̃M of(4.3) [multiplied by the distribution (2π)δ(E1 + E2 + · · · + EV ), which imposes the overallenergy conservation, where EV is an independent energy] is the product of the propagatorsin coordinate space, times the values of the vertices, integrated over the locations µa of thevertices, i.e.
G̃M(t1, . . . , tV ) = (−1)m

∫ V
∏

a=1

[dµaδ(ta − µa)]

I
∏

j=1

p̃Mj(µaj − µbj).Here p̃Mj(µaj − µbj) denotes the Fourier transform of the propagator pMj associated withthe line `j and µaj , µbj are the time coordinates of the `j endpoints, ordered so that the `jorientation points from the vertex of time µaj to the vertex of time µbj . The delta functionsare the Fourier transforms of the propagators of the external legs (which are identically onein energy space).The µ integrals are straightforward, so we just get
G̃M(t1, . . . , tV ) = (−1)m

I
∏

j=1

p̃Mj(taj − tbj ).We can formulate the Feynman rules of the diagrams in coordinate space as follows. Asusual, the unmarked vertices are equal to one and the marked vertices are equal to −1. Thepropagators p̃Mj(ta − tb) are assigned according to the scheme
(νa`jνb)→ zj = σ+

j + σ−
j → iθ(tab)e

itabζ
+

j − iθ(−tab)eitabζ
−

j ,

(νa`j ν̂b)→uj = σ+
j + τ−j → iθ(tab)e

itabζ
+

j − iθ(−tab)eitabξ
−

j ,

(ν̂a`jνb)→ vj = σ−
j + τ+j → iθ(tab)e

itabξ
+

j − iθ(−tab)eitabζ
−

j ,

(ν̂a`j ν̂b)→wj = τ+j + τ−j → iθ(tab)e
itabξ

+

j − iθ(−tab)eitabξ
−

j , (4.4)where tab = ta − tb and ta denotes the time coordinate of the vertex νa.Now we show thatLemma 1 the identity
∑markings M

G̃M(t1, . . . , tV ) = 0 (4.5)holds.Proof. We can assume that the vertices have distinct times, because the distributions(4.4) and the left-hand side of (4.5) do not involve contact terms. Then, there is a lowest12
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κ 0

G̃M G̃′M

κ

Figure 6: Mutually canceling contributionstime, which we denote by t0. Let κ denote its vertex. Formula (4.5) holds, because thesum on the left-hand side contains pairs of mutually canceling contributions, as shown in�g. 6. Speci�cally, for every diagram GM that has κ unmarked, there is an almost identicaldiagram G′
M that di�ers from GM just for the marking of κ. The contribution G̃′

M due to
G′

M is opposite to the contribution G̃M due to GM , because the extra marking implies anextra minus sign. On the other hand, all the propagators of GM and G′
M have equal values.Those that do not involve κ coincide, because they connect the same vertices. Those thatinvolve κ coincide, because the scheme (4.4) implies

(κ`jνb)→−iei(t0−tb)ζ
−

j , (κ`j ν̂b)→ −iei(t0−tb)ξ
−

j ,

(κ̂`jνb)→−iei(t0−tb)ζ
−

j , (κ̂`j ν̂b)→ −iei(t0−tb)ξ
−

j ,

(νa`jκ)→ iei(ta−t0)ζ
+

j , (ν̂a`jκ)→ iei(ta−t0)ξ
+

j ,

(νa`jκ̂)→ iei(ta−t0)ζ
+

j , (ν̂a`jκ̂)→ iei(ta−t0)ξ
+

j ,which shows that in all cases a marked κ gives the same propagator as does an unmarked
κ. �The next step is to extract useful pieces of information from the result (4.5). The left-hand side of equation (3.6) can be expanded as a sum

∑markings M

(−1)m
I
∏

i=1

pMi(Ei) =
∑

θ

cθ
∏I

i=1

1

Ei − θi
(4.6)of polar monomials

∏I

i=1

1

Ei − θi
, (4.7)where θ is an assignment of polar numbers θi = ζ+i , ξ+i , ζ−i or ξ−i to the legs `i of the diagram13
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GorFigure 7: Diagram with time ordered legsand cθ are numerical coe�cients. When we integrate on the loop energies,
∑

θ

cθ

∫

∏I

i=1

1

Ei − θi

∏L

j=1

dej
2π

, (4.8)multiply by (2π)δ(
∑V

i=1 Ei) and take the Fourier transform, we get the left-hand side of (4.5).If we make these operations on a single polar monomial (4.7), we obtain a contribution that isproportional to a product of θ functions times various exponential factors. We schematicallywrite it as
∏I

j=1
θ(∆tj)e

iρj∆tj = Θ(t1, . . . , tI)
∏I

j=1
eiρj∆tj , where Θ(t1, . . . , tI) ≡

∏I

j=1
θ(∆tj).(4.9)Here ρj can be ζ+j , ξ+j , −ζ−j or −ξ−j , and ∆tj = taj − tbj in the �rst two cases, ∆tj = tbj − tajin the other two. Note that each product of exponential factors is associated with a uniquedistribution Θ(t1, . . . , tI).We start from the knowledge that the left-hand side of (4.5) vanishes. We can isolate eachcontribution (4.9) from the others by looking at the exponential factors. Since the numbers

ζ+j , ξ+j , ζ−j and ξ−j can be chosen arbitrarily, apart from the signs of their imaginary parts,each contribution (4.9) must disappear independently from equation (4.5).The Fourier transform (4.9) of a polar monomial can disappear from (4.5) for two rea-sons: the numerical coe�cient cθ in front of it vanishes, or the distribution Θ(t1, . . . , tI) isidentically equal to zero. Consequently, the right-hand side of (3.6) can only contain thepolar monomials that have a vanishing Θ(t1, . . . , tI). Thus, it is mandatory to understandwhen that happens.Consider the distribution Θ(t1, . . . , tI) together with the �naked� diagram G, that is tosay the diagram G with no markings on the vertices and no orientations on the lines. Wewant to use Θ(t1, . . . , tI) to equip G with a time ordering (which has nothing to do with14
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the orientation based on the energy �ow met so far). Precisely, we equip each G internalline with an arrow pointing from the endpoint of lower time to the endpoint of larger time.Denote the diagram obtained this way by Gor (see �g. 7) and its distribution Θ(t1, . . . , tI)by Θ(Gor).We say that a curve γ is time ordered if its lines have coherent time orientations. Wedenote the product of the theta functions associated with its lines by Θ(γ).If γ is not time ordered and ta, tb are the times associated with its endpoints, Θ(γ) isnontrivial both for ta > tb and ta < tb. To see this, observe that, since we are just interestedin the endpoints, two adjacent lines with coherent time orderings can be collapsed ontoa single line with the same ordering. Thus, it is su�cient to consider the cases whereadjacent legs have opposite time orderings, as in the examples of �g. 8, where time is thevertical coordinate. It is evident that for arbitrary ta and tb, there exist con�gurations ofthe intermediate vertices that make Θ(γ) nontrivial.Now we prove two useful lemmas. The �rst one is a generalization of the property justshown.Lemma 2 Let νa and νb denote two distinct vertices of Gor. Denote their times by ta and
tb, respectively. Assume that Θ(Gor) is nontrivial, but vanishes identically for ta > tb. Then
Gor contains a time ordered curve that connects νa to νb.Proof. The distribution Θ(Gor) can be viewed as a set constraints on the relative timesof the nearest neighbors. When any of those constraints is violated, Θ(Gor) vanishes. Wecan assume that va and vb are not nearest neighbors, because in that case the theorem istrivial. Assume that Θ(Gor) forces a vertex ν, di�erent from νa and νb, to be in the future ofall its nearest neighbors. If so, send ν to the in�nite future, which is equivalent to dropping νand cutting the legs attached to it. Similarly, if Θ(Gor) forces a vertex ν̄ 6= νa, νb to be in thepast of all its nearest neighbors, send it to the in�nite past. Once both types of vertices aredropped, a reduced diagram G′or is obtained, equipped with a reduced distribution Θ(G′or).Since Θ(Gor) vanishes identically for ta > tb, Θ(G′or) satis�es the same property. Next,

Figure 8: Adjacent legs with opposite time orderings15
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repeat the procedure on G′or: Θ(G′or) may force other vertices, di�erent from νa and νb,to be in the past or future of all their nearest neighbors; if we drop them, we obtain afurther reduced diagram G′′or, on which we can iterate again. At the end, we remain with areduced diagram Gredor that contains νa, νb and possibly vertices that are forced to have bothpast and future nearest neighbors. Moreover, Θ(Gredor ) vanishes identically for ta > tb. Inparticular, Gredor cannot contain just νa and νb, because in that case the distribution Θ(Gredor )would be identically one. We infer that Gredor must contain at least one vertex ν besides νaand νb. Then, ν must have a future neighbor νf and a past neighbor νp. Similarly, νf musthave a future neighbor ν ′f, while νp must have a past neighbor ν ′p. Continuing like this, weeventually reach νb in the future and νa in the past, and identify a time ordered curve γabthat connects νa to νb. �Lemma 3 The distribution Θ(Gor) is trivial if and only if Gor contains a time ordered loop.For example, the diagram of �g. 7 has a time ordered loop. A time ordered loop clearlyvanishes, because the theta functions con�ict with one another, as in
θ(t1 − t2)θ(t2 − t1), θ(t1 − t2)θ(t2 − t3)θ(t3 − t1). (4.10)The key content of the Lemma is that this is the only situation that can make Θ(t1, . . . , tI)vanish.Proof. Assume that Gor is a tree diagram. Then, the distribution Θ(Gor) is nontrivial,because it just orders the vertices according to time: the con�gurations t1, . . . , tI where

Θ(t1, . . . , tI) is equal to one have nonvanishing measure.Now, proceed by induction. Assume that the theorem holds for diagrams with L loopsor less. Consider an (L+1)-loop diagram Gor. Cut one leg (νa ¯̀νb), so as to obtain an L loopdiagram GL, which satis�es the theorem by the inductive assumption. If Θ(GL) is trivial,it has a time oriented loop and so does Θ(Gor). If Θ(GL) is nontrivial, we distinguish twocases: (i) Θ(GL) is nontrivial for both ta < tb and ta > tb; (ii) Θ(GL) is trivial for either
ta < tb or ta > tb. When we close the (L + 1)-th loop, the leg (νa ¯̀νb) orders the times taand tb. In case (i), Θ(Gor) is nontrivial. In case (ii), Θ(Gor) is trivial if and only if the timeordering due to (νa ¯̀νb) con�icts with the one due to Θ(GL). By Lemma 2, GL contains atime ordered curve γab connecting νa and νb. Thus, Θ(Gor) is trivial if and only if the unionof (νa ¯̀νb) and γab is a time oriented loop. �Now, let us go back to equation (4.6), that is to say the expansion of the left-hand sideof (3.6) in terms of polar monomials (4.7). We recall that every polar monomial leads to a16
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contribution (4.9), when we integrate on the loop energies and take the Fourier transform.Since each contribution (4.9) is independent of the others, equation (4.5) implies that ev-ery time the distribution Θ(t1, . . . , tI) is nontrivial, the coe�cient cθ must vanish. Thus,the right-hand side of (4.6) contains only the polar monomials (4.7) that lead to a trivial
Θ(t1, . . . , tI). Moreover, we have just proved that Θ(t1, . . . , tI) is trivial if and only if Gorcontains a time ordered loop γor, i.e. Θ(γor) is trivial. Now we have to understand how thisrequirement re�ects on the polar monomial (4.7).Consider the legs `i of γor and collect the values of their indices i into the set sor. Multiply
Θ(γor) by the appropriate exponential factors eiρj∆tj , as in (4.9),

Θ(γor)∏
j∈sor eiρj∆tj =

∏

j∈sor θ(∆tj)e
iρj∆tj . (4.11)We �rst assume that γor is also oriented, in the sense of the energy �ow. Then, thetriviality of the distribution (4.11) leads, after Fourier transform, to the identity

∫ +∞

−∞

de

2π

∏

i∈sor 1

Ei − θi
= 0, (4.12)for arbitrary values of ζ+i , ζ−i , ξ+i and ξ−i , i ∈ sor, where e is the loop energy of γor. Here,

e is one of the loop energies e1, . . . , eL and appears inside each Ei of (4.12) with coe�cient
+1.Now we show that the identity (4.12) holds if and only if the polar numbers θi are allplaced on the same side with respect to the real axis, which means that the loop γor ispolarized. It is obvious that this condition is su�cient, because if we close the integrationpath on the half plane with no poles, the residue theorem gives zero. The condition isalso necessary, as we show by reductio ad absurdum. Assume that the integral of (4.12) isidentically zero when one or more poles are above the real axis and one or more poles arebelow it. Move all the poles with positive imaginary parts into a single pole θ+ and all thosewith negative imaginary parts into a single pole θ−. This gives an integral of the form

∫ +∞

−∞

1

(e− θ+)n+(e− θ−)n−

de

2π
=

(

n+ + n− − 2

n+ − 1

)

i(−1)n++1

(θ+ − θ−)n++n−−1
,which is obviously nonvanishing, contradicting the assumption. Thus, γor is polarized.If γor is not oriented in the sense of the energy �ow, its loop energy e must be de�nedanew, since it is not one of the standard integrations variables e1, . . . , eL we have been usingso far. Choose a direction for the e �ow along γor and split the set sor into s′or ∪ s′′or , suchthat the legs `i with i ∈ s′or have orientations coherent with the e �ow, while the legs `i with

i ∈ s′′or have orientations opposite to the e �ow. Consider the integrand of (4.12) and write17



16A3Renor
m

Ei = e + E ′
i for i ∈ s′or, Ei = −e + E ′

i for i ∈ s′′or, where E ′
i are energies independent of e.Then, the condition that the Fourier transform of (4.11) vanishes identically gives

∫ +∞

−∞

de

2π

∏

i∈s′or 1

E ′
i + e− θi

∏

j∈s′′or 1

E ′
j − e− θj

= 0.We know that this condition holds if and only if the poles are located on the same side ofthe complex plane with respect to the real e axis. This means that each θi with i ∈ s′ormust be located on one half plane and each θi with i ∈ s′′or must be located on the otherhalf plane. We see again that the loop γor is polarized, i.e. adjacent γor legs of coherent(opposite) orientations carry polar numbers of coherent (opposite) polarities.Since the conclusions hold for arbitrary energies, as well as arbitrary polar numbers ζ+i ,
ξ+i , ζ−i and ξ−i , it also holds for arbitrary polar numbers σ+

i , τ+i , σ−
i and τ−i . This givesformula (3.6) and concludes the proof. �5 Examples and applicationsIn quantum �eld theory, we can decompose each propagator into the sum of two polarnumbers, called �half propagators�, each of which has a unique pole. The polarity refersto the location of the pole with respect to the real axis. From now on, positive (negative)polarity means that the pole is located below (above) the real axis.A polarized monomial has a polarized loop. As explained above, the integral on theenergy of a polarized loop is equal to zero, because all the poles of its integrand are locatedon the same side with respect to the real axis. Therefore, the integral of the left-hand sideof (3.6) on the loop momenta vanishes. This operation leads to the diagrammatic cuttingequation associated with the diagram G.In this section, we illustrate these properties in various one-loop and two-loop diagramsand include the algebraic identities of other diagrams, up to three loops. In section 6 wegeneralize them to prove the perturbative unitarity of quantum �eld theories.5.1 Bubble diagramThe �bubble� diagram is the diagram (b) of �g. 1. Its marked versions are shown in �g.3 and lead to the polynomial identity (3.7). Now we show how to apply this identity andderive the diagrammatic cutting equations.The value of the bubble diagram is given by the convolution of two propagators. In D18
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dimensional scalar �eld theories, we have
B =

∫

dDk

(2π)D
1

k2 −m2
1 + iε

1

(k − p)2 −m2
2 + iε′

. (5.1)For convenience, we keep the in�nitesimal widths ε and ε′ di�erent from each other. Thereason will become apparent below. The arguments that follow focus on the energy integral,which is convergent. We do not need to pay attention to the integral on the space momentum.That integral may diverge in certain dimensions D, in which case it can be de�ned by meansof a regularization (the dimensional technique being the most convenient choice).De�ne the polar numbers
σ±
1 = ± 1

2ω1ε

1

k0 ∓ ω1ε

, σ±
2 = ± 1

2ω2ε′

1

k0 − p0 ∓ ω2ε′
, τ±i = −(σ∓

i )
∗, (5.2)where the complex frequencies are ω1ε =

√

k2 +m2
1 − iε, ω2ε′ =

√

(k− p)2 +m2
2 − iε′ andcontain the ε, ε′ prescriptions. We see that σ+

i and τ+i have poles located below the realaxis, while σ−
i and τ−i have poles located above the real axis.Note that the de�nition of polarity we use here di�ers from the one used in the proof ofthe previous section in several respects. In particular, the signs of the imaginary parts of

σ±
i and τ±i do not agree with the signs of the imaginary parts of their poles. We recall thatthe algebraic theorem of section 3 works with any de�nition of polarity.The combinations
z1 = σ+

1 + σ−
1 =

1

k2 −m2
1 + iε

, z2 = σ+
2 + σ−

2 =
1

(k − p)2 −m2
2 + iε′

, wi = −z∗i ,(5.3)give the propagators and (minus) their conjugates.Now, de�ne the �cut propagators� ui and vi as
ui = σ+

i + τ−i , vi = σ−
i + τ+i . (5.4)We call these combinations cut propagators even if they are de�ned at ε, ε′ 6= 0. Strictlyspeaking, the usual cut propagators are obtained in the limits ε, ε′ → 0. For example, using

ω1ε ∼ ω1 − iε/(2ω1), where ω1 = ω1ε|ε=0, we get
lim
ε→0

u1 = −2iπθ(k0)δ(k2 −m2
1), lim

ε→0
v1 = −2iπθ(−k0)δ(k2 −m2

1), (5.5)which are the usual cut propagators of a scalar �eld, multiplied by −i. The limits of u2 and
v2 for ε′ → 0 give (5.5) with the replacements k → k − p and m1 → m2.19
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Figure 9: Cutting equation of the bubble diagramAt this point, we can write the bubble diagram (5.1) and its conjugate in the form
B =

∫

z1z2, B
∗ =

∫

w1w2,and use the polynomial identity (3.7). The decomposition (3.7) is advantageous for theintegration over the loop energy k0. Expand the right-hand side of (3.7) as a sum of polarizedmonomials and pick one such monomial at a time. Its poles are located on the same sideof the complex plane with respect to the real axis. When we integrate k0 along the realaxis, we can close the integration path at in�nity on the side that contains no poles. By theresidue theorem, each polarized monomial gives zero. Thus, the momentum integral of theleft-hand side of (3.7) also vanishes. This gives the relation
B+B

∗ =

∫

u1v2 +

∫

v1u2, (5.6)which is graphically shown in �g. 9. The Feynman rules are those of �g. 2 (together witha factor −1 for every marked vertex).The right-hand side of �g. 9 is minus the sum of the cut diagrams, which is popularlyrepresented as shown in �g. 10 by shadowing the areas that contain the marked vertices.Note that ε, ε′ are still di�erent from zero, so the identity (5.6) is actually more generalthan the ones we are accustomed to in quantum �eld theory. Indeed, in those identities, thecut propagators ui are replaced by their limits (5.5). In our identity, instead, ε and ε′ canbe arbitrary positive numbers.We see that the diagrammatic cutting equation of �g. 9 is a straightforward consequenceof the simple polynomial identity (3.7).
Figure 10: Cut bubble diagrams20
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Figure 11: Marked triangle diagrams5.2 Triangle and box diagramsThe �triangle� diagram is the one-loop oriented diagram with three adjacent lines. It leadsto the polynomial identity
z1z2z3 − w1w2w3 − u1v2z3 − z1u2v3 − v1z2u3 + v1u2w3 + w1v2u3 + u1w2v3

=
∏3

i=1
(σ+

i − τ+i ) +
∏3

i=1
(σ−

i − τ−i ), (5.7)which is easy to verify directly. The left-hand side of this formula can be worked out fromthe sum of the triangle diagram plus its marked versions, shown in �g. 11, by applyingthe Feynman rules of �g. 2 and multiplying by (−1)m, where m is the number of markedvertices. The right-hand side of (5.7) corresponds of the polynomial PG of formula (3.6),which in the one-loop case is known in closed form due to formula (3.8).The triangle diagram gives the integral
T =

∫

dDk

(2π)D
1

k2 −m2
1 + iε

1

(k − p)2 −m2
2 + iε′

1

(k − q)2 −m2
3 + iε′′

, (5.8)where p and q are external momenta. To extend the analysis of the previous section, weadd the de�nitions
σ±
3 =± 1

2ω3ε′′

1

k0 − q0 ∓ ω3ε′′
, z3 = σ+

3 + σ−
3 , τ±3 = −(σ∓

3 )
∗, w3 = −z∗3 ,

u3= σ+
3 + τ−3 , v3 = σ−

3 + τ+3 , (5.9)to the previous ones, where ω3ε′′ =
√

(k− q)2 +m2
3 − iε′′.Again, we integrate both members of equation (5.7) on k0. The right-hand side giveszero by the residue theorem, because of our de�nition of polarity, while the left-hand side21
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Figure 12: Marked chestnut diagramsleads to the identity
T + T

∗ −
∫

u1v2z3 −
∫

z1u2v3 −
∫

v1z2u3 +

∫

v1u2w3 +

∫

w1v2u3 +

∫

u1w2v3 = 0.This formula is graphically represented by equating the sum of �g. 11 to zero. It can also beviewed as a diagrammatic cutting equation, by shadowing the marked areas of the diagrams.Once again, the diagrammatic cutting equation is rooted into the simple polynomial identity(5.7).Without giving further details, we report the polynomial identity associated with thebox diagram, which is
z1z2z3z4 + w1w2w3w4 − u1v2z3z4 + u1w2v3z4 − u1w2w3v4 − z1u2v3z4 + z1u2w3v4 − v1u2w3w4

−z1z2u3v4 + v1z2u3w4 − w1v2u3w4 − v1z2z3u4 + w1v2z3u4 − w1w2v3u4 + v1u2v3u4 + u1v2u3v4

=
∏4

i=1
(σ+

i − τ+i ) +
∏4

i=1
(σ−

i − τ−i ).5.3 Two-loop and three-loop diagramsNow we give a two-loop example, the chestnut diagram shown as �rst in �g. 12, whichincludes its marked versions. The associated polynomial identity reads
z1z2z3z4 − w1w2w3w4 − u1v2z3z4 − v1z2u3v4 − z1u2v3u4 + v1u2w3w4 + u1w2v3u4 + w1v2u3v4

=
∑

[

aρ+1 ρ
+
2 ρ

+
3 η4 + bρ−1 ρ

−
2 ρ

−
3 η4 + cη1η2ρ

+
3 ρ

+
4 + dη1η2ρ

−
3 ρ

−
4

]

, (5.10)where each ρi can stand for σi or τi and each ηi can stand for σ+
i , σ−

i , τ+i or τ−i . The sumis over all such choices, a, b, c, d denoting unspeci�ed numerical coe�cients.22
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The oriented loops are 123 and 34. The loop 124 is redundant, because whenever itis polarized, either 123 or 34 is also polarized. The right-hand side of (5.10) is a sum ofpolarized monomials that factorize the polarized loops ρ+1 ρ+2 ρ+3 , ρ−1 ρ−2 ρ−3 , ρ+3 ρ+4 or ρ−3 ρ−4 , asrequired by formula (3.6).The chestnut diagram gives the loop integral
C =

∫

dµ
1

k2 −m2
1 + iε1

1

(k − p)2 −m2
2 + iε2

1

(k + q − p′)2 −m2
3 + iε3

1

q2 −m2
4 + iε4

,where p and p′ are external momenta and the measure dµ is dDkdDq/(2π)2D. The de�nitionsof polar numbers, propagators and cut propagators are straightforward, mimicking the for-mulas (5.2), (5.3), (5.4) and (5.9). When we integrate on the loop momenta, the right-handside of (5.10) gives zero, since every term contains a polarized oriented loop. The integralon the energy of that loop vanishes by the residue theorem, since the integrand has polesonly above or below the real axis. In the end, we obtain the diagrammatic cutting equationgraphically represented by equating the sum of �g. 12 to zero.If we �ip the orientations of the legs 3 and 4, we obtain a di�erent orientation, for thediagram, and a di�erent polynomial identity, which is equal to (5.10) upon exchange of thesubscripts 3 and 4. In that case, the oriented loops become 124 and 34, so the right-handside of (5.10) contains the polarized factors ρ+1 ρ
+
2 ρ

+
4 , ρ−1 ρ−2 ρ−4 , ρ+3 ρ+4 and ρ−3 ρ

−
4 . The twoorientations lead to equivalent identities for the integral C, because they amount to send theloop momentum q to −k − q. To better see this, it is convenient to switch o� the externalmomenta p and p′, because they are not important for the polynomial identity.We also report the polynomial identities associated with the two-loop self-energy dia-grams of �g. 4. The �rst diagram gives

z1z2z3z4z5 + w1w2w3w4w5 − u1v2z3z4z5 − z1u2v3z4u5 − z1z2z3u4v5 − v1z2u3v4z5

+u1w2v3z4u5 + u1v2z3u4v5 + w1v2u3v4z5 + v1u2w3v4u5 + z1u2v3u4w5 + v1z2u3w4v5

−v1u2w3w4w5 − w1v2u3w4v5 − w1w2w3v4u5 − u1w2v3u4w5

=
∑

[

aρ+1 ρ
+
2 ρ

+
3 η4η5 + bρ−1 ρ

−
2 ρ

−
3 η4η5 + cη1η2ρ

+
3 ρ

+
4 ρ

+
5 + dη1η2ρ

−
3 ρ

−
4 ρ

−
5

]

. (5.11)The second diagram gives the same identity with σ+
4 ↔ σ−

4 , τ+4 ↔ τ−4 , σ+
5 ↔ σ−

5 , τ+5 ↔ τ−5 .In either case, the loop 1245 is redundant, because when it is polarized, either 123 or 345is polarized. Note that in the second diagram the loop 345 is not oriented and the last twocontributions of (5.11) become proportional to the polarized loops ρ+3 ρ−4 ρ−5 and ρ−3 ρ
+
4 ρ

+
5 .Finally, we give a three-loop example, the box diagram equipped with diagonals. Let 1,2, 3, 4 label the legs of the box and 5, 6 the diagonals. De�ne the leg orientations so that23
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the oriented loops are 1234, 125 and 236. Then the identity
z1z2z3z4z5z6 − u1v2z3z4z5u6 + u1w2v3z4v5u6 − u1w2w3v4v5w6 − z1u2v3z4v5z6 + z1u2w3v4v5v6

−v1u2w3w4w5v6 − z1z2u3v4z5v6 + v1z2u3w4u5v6 − w1v2u3w4u5w6 − v1z2z3u4u5z6

+w1v2z3u4u5u6 − w1w2v3u4w5u6 + v1u2v3u4w5z6 + u1v2u3v4z5w6 + w1w2w3w4w5w6 ∼ 0holds, where the right-hand side of (3.6), which we do not report in full form, is a sum ofpolarized monomials. The polarized loops are 125, 236, 345 and 146, the last two beingnonoriented.6 Perturbative unitarity of quantum �eld theoriesIn this section we show how to use the algebraic cutting equations to prove the perturba-tive unitarity of quantum �eld theories. We begin with nonderivative scalar theories. Forde�niteness, we may consider the ϕ4 theory, described by the Lagrangian
L =

1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 − λ

4!
ϕ4,which is renormalizable in D 6 4. Alternatively, we may take the ϕ6 theory, which isrenormalizable in D 6 3, or the ϕ3 theory, which is renormalizable in D 6 6. The discussionis actually independent of the form of the potential and the number of legs carried by thevertices, as long as they do not contain derivatives. Derivative vertices may be includedwith a few extra manipulations, which we describe at the end of this section. There, we alsogeneralize the arguments to �elds of di�erent spins and nonrenormalizable theories.De�ne the polar numbers

σ±
kε = ±

1

2ωkε

1

k0 ∓ ωkε

, τ±
kε = −(σ∓

kε)
∗, (6.1)where ωkε =

√
k2 +m2 − iε. The poles of σ+

kε, τ+kε are located below the real axis and thoseof σ−
kε, τ−kε are located above the real axis. The combinations

zkε = σ+
kε+σ−

kε =
1

k2 −m2 + iε
, wkε = −z∗kε, ukε = σ+

kε−(σ+
kε)

∗, vkε = σ−
kε−(σ−

kε)
∗,give the propagators, their conjugates and the cut propagators. As before, we can use adi�erent ε for each propagator.Given a Feynman diagram G with V vertices and I internal legs, we assign loop energiesand an orientation to it as speci�ed by proposition 1 of section 2. We can promote the24
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= iv

= iw= iz

= iu = iλ

= −iλ

Figure 13: Feynman rules in the standard notationenergy assignments to assignments for the full momenta of the internal legs. So doing, weobtain a parametrization of G in momentum space.The Feynman rules we have used so far are made of the propagators of �g. 2 plus the rulethat an unmarked vertex is equal to +1 and a marked vertex is equal to −1. The Feynmanrules commonly used in quantum �eld theory are slightly di�erent, since they have an extrafactor i for each propagator (cut or not) and an extra factor −iλ for each vertex (markedor not), λ being the coupling. We show them in �g. 13. Each time we compute a diagramwith the rules of the previous sections, we miss the overall factor iI(−iλ)V with respect tothe more common notation of �g. 13. For the rest of this section, we switch to the commonnotation.After these rede�nitions, the propagator iw connecting two marked points is the complexconjugate of the propagator iz connecting two unmarked points. Moreover, the propagators
iu and iv connecting a marked point to an unmarked one are real. Finally, the markedvertices are the complex conjugates of the unmarked vertices.Now we turn to the identity (3.6) and integrate it on the loop momenta. If G containsno tadpoles, the right-hand side vanishes, because it is a sum of polarized monomials. Werecall that a polarized monomial has a polarized loop γpol. As explained in section 4, wecan reparametrize the loop integral so that the energy e of γpol is one of the integratedvariables. The integral on e is zero by the residue theorem, since its integrand has polesonly above or below the real axis and we can close the integration path on the half planethat contains no poles. The integral of the left-hand side of (3.6) thus also vanishes, whichgives the cutting equation. Once we multiply the identity by the factors iI+V (−λ)V andswitch to the notation of �g. 13, we arrive at the common diagrammatic cutting equation

G(p1, · · · , pn) + Ḡ(p1, · · · , pn) = −
∑proper markings M

GM(p1, · · · , pn), (6.2)where p1, · · · , pn are the external momenta, G is the diagram with all unmarked vertices, Ḡis the diagram with all marked vertices, and GM denotes a diagram with a �proper� marking,i.e. with at least one marked vertex and one unmarked vertex.25



16A3Renor
m

Figure 14: Diagrams with tadpolesStrictly speaking, (6.2) is the common cutting equation only in the limit ε → 0, wherethe cut propagators force the energy to �ow from the unmarked endpoints to the markedendpoints. In that limit, numerous marked diagrams vanish due to energy conservation.Those which survive are precisely the usual cut diagrams. Nevertheless, it is always possibleto view a marked diagram as a cut diagram by means of closed cuts that circle subdiagramsmade of marked vertices. This way, we can extend the common terminology by callingequation (6.2) a cutting equation even at ε 6= 0.There is a caveat, though: we know that the diagrams that contain tadpoles are notcovered by the theorem of section 3. Thus, as far as we know now, equation (6.2) only holdsfor diagrams that contain no tadpoles. We can extend formula (6.2) to the whole set ofdiagrams as follows.Tadpoles are loop diagrams with a unique vertex, V = 1, so they have as many internallines as loops, by the topological identity L− I +V = 1. A three-loop example of a tadpoleand a two-loop example of diagram with a tadpole are shown in �g. 14. We recall that thereason why the diagrams with tadpoles are not covered by the theorem is that tadpoles leadto the integrals of single polar numbers, which are not convergent. Indeed, they behave as
∫

dk0/k0 for k0 large.Tadpoles and diagrams with tadpoles can be straightforwardly included in the treatment,as long as they satisfy one additional assumption, which we call the tadpole assumption:the value of a tadpole with an unmarked vertex must be opposite to the value of its markedversion. Graphically, we have �g. 15.Now we show that the tadpole assumption allows us to derive the cutting equations
... (L loops) ... (L loops)Figure 15: Tadpole assumption26
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Figure 16: Tadpole assumptionsatis�ed by the diagrams that contain tadpoles. Consider such a diagram, and call it GT .If we replace its tadpoles with external legs, we obtain a diagram GT̂ that satis�es (6.2).For example, let GT denote the second diagram of �g. 14. If we replace the tadpolesubdiagram with an external leg, we obtain a diagram GT̂ that is equivalent to the trianglediagram treated in the previous section (see �g. 16). We know that GT̂ satis�es the identityobtained by equating the sum of �g. 11 to zero, which leads to formula (6.2). Now, take�g. 11 and consider the upper-right external leg and the vertex ν to which it is attached.Suppress that leg and glue the tadpole to the vertex ν. Thanks to the �rst identity of �g.15, it does not matter whether ν is marked or not, since the value of the tadpole (neglectingthe minus sign due to the marked vertex, because it is already counted inside GT̂ ) in thesame in both cases. This means that the tadpole attachment amounts to multiplying thesum of �g. 11 by an overall factor. What we obtain by doing this and equating the total tozero is precisely the cutting equation satis�ed by GT .The property illustrated in this simple example can be generalized to all tadpole diagrams
GT , as long as the tadpole assumption holds. Ultimately, to derive the cutting equations oftadpole diagrams, it is su�cient to ignore the tadpole subdiagrams and apply the procedureused for every other diagram.It is easy to check that the scalar theories we are considering satisfy the tadpole assump-tion, if the dimensional regularization is used and ε is sent to zero. For example, the valueof the one-loop tadpole is [with the rules of �g. 13]

∫

dDk

(2π)D
i(−iλ)

k2 −m2 + iε
= −iλΓ

(

1− D
2

)

(4π)D/2
(m2 − iε)(D−2)/2 → −iλΓ

(

1− D
2

)

(4π)D/2
mD−2, (6.3)while its marked version has the opposite value. The reason is that the marked versioncarries a minus sign due to the marked vertex and two other minus signs that compensateeach other. Recall that the propagator connecting two marked points is iw = −iz∗. Theconjugation of z �ips the sign of the prescription +iε, which leads to a factor −1 thatcompensates the minus sign in front of iz∗. Thus, the �rst identity of �g. 15 holds.The L-loop tadpole is equal to the L-th power of (6.3), divided by (−iλ)L−1. It satis�es27
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the second identity of �g. 15, because its marked version carries a minus sign for themarked vertex, while the minus signs coming from the relation iw = −iz∗ still compensateeach other.We have proved that, in the end, all Feynman diagrams satisfy the diagrammatic cut-ting equations (6.2). From this point on, the proof of perturbative unitarity can proceedaccording to the common strategy [4].The proof extends to (local) theories with derivative vertices and propagators with non-trivial polynomial numerators. The algebraic cutting equations are the same. The di�erenceis that, before switching to the diagrammatic cutting equations, we must multiply both sidesof formula (3.6) by appropriate polynomial numerators. We must show that the right-handside still vanishes after integrating on the energies. This is less obvious than before.When the numerator contains enough powers of the energy, contact terms may appear.Contact terms collapse propagators and generate new types of vertices and diagrams, whichobey their own cutting equations. As shown in ref. [4], it is possible to associate eachdiagram G with a set of separate cutting equations that involve no contact terms, the sumof which is equivalent to the G cutting equations at ε → 0. For this reason, there is noloss of generality in assuming that contact terms are absent. Since the propagators we areconsidering contain two powers of the energy in the denominators, we can assume that thenumerators of the diagram G contain at most one power of each loop energy.As before, we can restrict to diagrams G with no tadpoles, since tadpoles are easilyattached to G at the end. Thus, every polarized loop γpol that appears in PG containstwo or more internal legs. If the internal legs are at least three, the energy integral is stillconvergent: each polar number behaves like 1/E for large energy E, while the numeratorprovides at most one E power; since the integrand of a polarized loop has all the poles onthe same side of the integration path, the residue theorem gives zero.The only case that deserves attention is when the polarized loop γpol has two legs, and,therefore, two vertices, which we call ν and ν ′. We can assume that γpol is oriented. Due tothe nontrivial numerator, we get the integrals
1

4ω1ω2

∫ +∞

−∞

dE

2π

E

(E − α± iε)(E − β ± iε′)
= ∓ i

8ω1ω2
, (6.4)depending on the polar numbers of γpol, where α and β are real. We have not included thevalues of the vertices in formula (6.4). We want to show that the contributions (6.4) canceleach other. The reason is that each polarized loop that contributes with the upper sign, i.e.

γpol = σ+
1 σ

+
2 , τ+1 σ+

2 , σ+
1 τ

+
2 , τ+1 τ+2 , is compensated by a polarized loop that contributes withthe lower sign, i.e. γpol = σ−

1 σ
−
2 , τ−1 σ−

2 , σ−
1 τ

−
2 , τ−1 τ−2 .28
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Consider the left-hand side of equation (3.6). Isolate the contributions where γpol = σ+
1 σ

+
2and γpol = σ−

1 σ
−
2 . They come from the diagrams GM where both ν and ν ′ are unmarked(recall that γpol is oriented) and the legs of the loop are z1z2. Such diagrams compensateeach other, when ε → 0, because the coe�cients of σ+

1 σ
+
2 and σ−

1 σ
−
2 are the same, but thevalues of the polarized loops are opposite, by formula (6.4). A similar argument appliesto the pair τ+1 τ+2 and τ−1 τ−2 , which comes from w1w2 (with both ν and ν ′ marked), as wellas the pair σ+

1 τ
+
2 and τ−1 σ

−
2 , which comes from u1v2, and �nally the pair τ+1 σ+

2 and σ−
1 τ

−
2 ,which comes from v1u2. In the last two cases one vertex ν or ν ′ is marked and the other oneis unmarked.We conclude that the proof of perturbative unitarity based on the algebraic cuttingequations applies to all scalar �eld theories, including those that have derivative vertices,as well as the nonrenormalizable ones. Following the guidelines of ref. [4], the proof canalso be generalized to the theories that include fermions, gauge �elds and gravity, as longas they are local, Hermitian and their kinetic terms are polynomials of degree two (in thecase of bosons) or degree one (in the case of fermions) in the time derivatives.7 Parity symmetrySome transformations relate algebraic cutting equations that may look di�erent, but areactually equivalent. Consider the polarity �ipping, that is to say the exchanges

σ+
i ←→ σ−

i , τ+i ←→ τ−i . (7.1)At the level of the propagators, this operation leaves zi and wi invariant and exchanges uiwith vi. By the Feynman rules of �g. 2, it is equivalent to �ip the orientations of all theinternal legs of the diagram G. We call (7.1) parity transformation.In the case of one-loop diagrams, the right-hand side PG of the identity (3.6) is invariant,by formula (3.8). Consequently, the left-hand side is also invariant. However, this fact maybecome apparent only after expanding it as a sum of polar monomials. Check for examplethe identity (5.7), associated with the triangle diagram.When the number of loops exceeds one, both the left- and right-hand sides of (3.6) maychange under the parity transformation. For example, it is easy to check that PG doeschange in the case of the self-energies of �g. 4.The diagrams G and Ḡ and so the left-hand side of the diagrammatic cutting equa-tion (6.2) are invariant. For this reason, (7.1) is a symmetry of the diagrammatic cuttingequations. Nevertheless, the right-hand side of (6.2) may get organized di�erently after thetransformation. 29
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The algebraic cutting equations likely possess other hidden symmetries that are awaitingto be uncovered. For example, the parity transformation (7.1) can be performed on just oneor more legs, instead of all of them. Moreover, the cut and uncut propagators are in somesense dual to each other, because both are linear combinations of half propagators and theirdi�erent roles only emerge at the graphical level.8 ConclusionsIn this paper, we have proved a set of algebraic identities that provide a clearer understandingof perturbative unitarity in quantum �eld theory. To conclude, we make some remarks onthe virtues of the algebraic approach to perturbative unitarity, in comparison with the usualapproach.When tadpoles are absent, equation (6.2) holds for arbitrary positive values of the widths
ε of the propagators (6.1). In particular, the widths ε need not be in�nitesimal. If we choosea di�erent ε for each internal leg, our algebraic theorem allows us to keep track of theme�ciently throughout the calculation. Each propagator (cut or not) keeps its own ε fromthe beginning to the end and no mixing between the εs of di�erent propagators does occur.This means that we are allowed to freely send them to zero in the order we want. When wedo it, the cut propagators become those we are accustomed to, i.e.

lim
ε→0

iukε = (2π)θ(k0)δ(k2 −m2), lim
ε→0

ivkε = (2π)θ(−k0)δ(k2 −m2).Yet, we stress again that the identity (6.2) also holds when the cut propagators are iukε and
ivkε, where ε is arbitrary, at least when tadpoles are absent. When tadpoles are present, thewidths can be arbitrary everywhere but in the tadpoles, where they must be set to zero toensure that the tadpole assumption holds. Similar arguments hold for the contact terms,which lead to formulas such as (6.4), when derivative vertices are present.If we do not use the algebraic theorem of this paper and make rather natural operationson the integrands, it is easy to generate inconvenient mixings between the εs of di�erentpropagators and encounter ill-de�ned distributions such as [11]

1

ω − ω′ − p0 − i(ε1 − ε2)
, (8.1)where ω =

√

k2 +m2
1 and ω′ =

√

(k− p)2 +m2
2 are some frequencies, p is an externalmomentum and k is a loop momentum. It is possible to show (see ref. [11] for details) thatthe ill-de�ned part of (8.1) ultimately does not contribute. The theorem proved here guidesus through the calculations without ever meeting these ill-de�ned distributions.30



16A3Renor
m

Going through the analysis recently made in ref. [4], where the assumptions behind theproof of perturbative unitarity have been relaxed to a minimum, it is possible to realizethat the properties just emphasized can also be proved in the usual nonalgebraic approach.However, an approach like the algebraic one, which makes them so apparent, is of greatadvantage.The usual approach is also responsible for giving some false impressions. For example,it suggests that the cut propagators must force the energy propagation in a given direction.This is not true, as the validity of (6.2) at arbitrary, nonvanishing widths points out. Again,it is not impossible to show this fact in the usual approach, because the assumption aboutthe energy �ow enters the proof only at a later stage [4]. However, the roles of the variousingredients of the proof become much clearer when the algebraic cutting equations are used.The algebraic approach is useful to prove perturbative unitarity to all orders in theoriesthat have not been reached by more standard techniques, as recently shown in ref. [12] forthe Lee-Wick models and the fakeon models.AcknowledgmentsWe are grateful to U. Aglietti and M. Piva for useful discussions.References[1] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes,J. Math. Phys. 1 (1960) 429;M. Veltman, Unitarity and causality in a renormalizable �eld theory with unstableparticles, Physica 29 (1963) 186.[2] G. 't Hooft, Renormalization of massless Yang-Mills �elds, Nucl.Phys. B 33 (1971) 173;G. 't Hooft, Renormalizable Lagrangians for massive Yang-Mills �elds, Nucl. Phys. B35 (1971) 167.[3] See for example, G. Curci and R. Ferrari, An alternative approach to the proof ofunitarity for gauge theories, Nuovo Cimento A 35 (1976) 273, and references therein.[4] D. Anselmi, Aspects of perturbative unitarity, Phys. Rev. D 94 (2016) 025028,16A1 Renormalization.com and arXiv:1606.06348 [hep-th].[5] G. 't Hooft and M.J. Veltman, Diagrammar, report No. CERN-73-09, available atthis link. 31
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