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Inconsistency Of MinkowskiHigher-Derivative TheoriesUgo G. AgliettiDipartimento di Fisica, Università di Roma �La Sapienza�,Piazza Aldo Moro 2, 00185 Rome, Italyugo.aglietti@roma1.infn.itDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italyand INFN, Sezione di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italydamiano.anselmi@unipi.itAbstractWe show that Minkowski higher-derivative quantum �eld theories are generically incon-sistent, because they generate nonlocal, non-Hermitian ultraviolet divergences, which cannotbe removed by means of standard renormalization procedures. By �Minkowski theories� wemean theories that are de�ned directly in Minkowski spacetime. The problems occur whenthe propagators have complex poles, so that the correlation functions cannot be obtainedas the analytic continuations of their Euclidean versions. The usual power counting rulesfail and are replaced by much weaker ones. Self-energies generate complex divergences pro-portional to inverse powers of D'Alembertians. Three-point functions give more involvednonlocal divergences, which couple to infrared e�ects. We illustrate the violations of thelocality and Hermiticity of counterterms in scalar models and higher-derivative gravity.
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1 IntroductionThe ultraviolet structure of quantum �eld theories is notoriously a fundamental problem inhigh-energy physics. Nowadays, with the Large Hadron Collider (LHC) currently running ata center-of-mass energy of 13TeV, the standard model is experimentally veri�ed at the TeVscale. On the theoretical side, the renormalizability of the standard model, together withthe relatively small value found for the Higgs mass, mH ' 125GeV, imply that the modelcould be valid at energies much higher than the ones investigated so far. The interest in ahigh-energy modi�cation of the standard model is, therefore, rather limited, on the practicalside. As far as quantum gravity is concerned, the situation is di�erent. The negative massdimension of the coupling (compared with the dimensionless gauge couplings of the standardmodel) makes the Hilbert-Einstein action nonrenormalizable [1]. This fact, together with thedi�culties to build up a phenomenology, render the investigation of alternative high-energystructures of quantum gravity more attractive.An interesting class of higher-derivative quantum �eld theories are those whose propaga-tors have complex poles. In that case, the Euclidean and Minkowski versions of the theoriesare not related to each other by the analytic continuation. In this paper, we concentrateon the Minkowski formulation of such theories, that is to say we integrate the loop energiesalong the real axis. We show that such theories are generically inconsistent, because theyviolate both the locality and Hermiticity of counterterms. For example, the one-loop bubblediagram Σ(p) of massless higher-derivative scalar �elds in six spacetime dimensions has anultraviolet divergence of the form:
Σ(p) = − M4

2(4π)3

[

M2

(p2)2
− i

p2

]

ln

(

Λ2
UV

M2

)

+ · · · , (1.1)where ΛUV is a hard ultraviolet cuto� on the space momenta, M is the scale associated withthe higher-derivative terms and the dots denote convergent terms. Similar results occur infour dimensions, when vertices carry derivatives. More involved nonlocal structures appearin triangle diagrams. Moreover, gauge symmetries are unable to protect the locality andHermiticity of counterterms. We prove this fact by extending the calculations to a model ofhigher-derivative quantum gravity [2].The rules of power counting obeyed by Minkowski higher-derivative theories are muchweaker than the standard ones, because a propagator calculated on the pole of another propa-gator falls o� half less rapidly than expected. This property implies that the higher-derivativeterms often have an �antiregulating� e�ect, in the sense that they enhance divergences rather2
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than suppressing them. The divergences (1.1) can also be related to speci�c pinch singular-ities occurring for p2 → 0, which have no direct analog in standard �eld theories.It is well-known that, when the free propagators just have poles in�nitesimally close tothe real axis, in the second and forth quadrants, Minkowski higher-derivative theories arephysically unacceptable, because they violate perturbative unitarity. Our results show thatwhen the free propagators also contain poles that are located at �nite distances from thereal axis, in the �rst and third quadrants, the theories are in general unacceptable fromthe mathematical point of view, because they violate both the locality and Hermiticity ofcounterterms.The problems we have found do not occur in Euclidean theories, Lee-Wick models [3]or Minkowski theories that are analytically equivalent to their Euclidean versions. In thosecases, nonlocal divergences may appear in some intermediate steps of the calculations (exam-ples being the residues of the integrals on the energies, if taken separately), but they cancelout at the end.The paper is organized as follows. In sec. 2 we study some key aspects of the higher-derivative Minkowski propagator. In sec. 3, we calculate the nonlocal divergent part of thebubble diagram in six dimensions and generalize the calculation to the bubble diagram withnontrivial numerators in four dimensions. In sec. 4, we study the one-loop triangle diagramand provide an interpretation for its nonlocal divergent part. In sec. 5 we investigate themodi�ed power counting of Minkowski quantum �eld theories. In sec. 6, we study a higher-derivative version of quantum gravity in four dimensions and prove that gauge symmetriesfail to protect the locality and Hermiticity of counterterms. Finally, in sec. 7 we draw ourconclusions.In appendix A we show that the dimensional regularization (of the integrals on the spacemomenta) allows us to apply the residue theorem on the energy integrals, even when theyare divergent. In appendix B we discuss the gauge �xing of Minkowski higher-derivativegravity and show that the Ward-Takahashi-Slavnov-Taylor (WTST) identities [4] are alsoplagued with nonlocal divergences.2 Higher-derivative propagatorThe standard propagator of a spinless particle reads
∆(p,m) =

1

p2 −m2 + iε
. (2.1)3
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To increase the convergence of the loop integrals for large virtualities, |p2| � m2, it is naturalto introduce additional powers of p2 in the denominator to obtain, for example, a modi�edpropagator of the form
S(p,m) =

1

p2 −m2 + iε

M4

(p2)2 +M4
. (2.2)For small virtualities, |p2| � M2, the modi�ed propagator approaches the standard one,

S(p,m) ' ∆(p,m), while in the asymptotic region
|p2| � M2, (2.3)it decays quite faster:

S(p,m) ' M4

(p2)3
.By means of a partial fractioning in p2, the higher-derivative propagator (2.2) can also bewritten as

S(p,m)=
M4

M4 +m4

1

2ωε(ps)

[

1

p0 − ωε(ps)
− 1

p0 + ωε(ps)

]

− M2

M2 − im2

1

4Ω(ps)

[

1

p0 − Ω(ps)
− 1

p0 + Ω(ps)

]

+

− M2

M2 + im2

1

4Ω̄(ps)

[

1

p0 − Ω̄(ps)
− 1

p0 + Ω̄(ps)

]

, (2.4)where ωε(ps) ≡
√

p2s +m2 − iε, Ω(ps) ≡ √

p2s − iM2, pµ = (p0,p) and ps = |p|. The polesare located at p0 = ±ωε(ps), p0 = ±Ω(ps) and p0 = ±Ω̄(ps), where the bar denotes thecomplex conjugation. Since poles are present in every quadrant, the Euclidean theory andthe Minkowski theory are not related in a simple way. In this paper we concentrate on theMinkowski theory, that is to say we assume that the loop integral is de�ned by integratingthe energy along the real axis.In general, the factor
M4

(p2)2 +M4
6 1 (2.5)is expected to have an ultraviolet regulating e�ect, by suppressing the states with |p2| � M2.We show that it is not the case in Minkowski theories. Actually, often the factor (2.5) roughlyhas an opposite, �anti-regulating� e�ect.For large space momenta, ps � M , the complex poles come close to the real axis, since

Ω(ps) ≡
√

p2s − iM2 ' ps − iη, Ω̄(ps) ' ps + iη,4
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where η is the small positive quantity
η = η (ps) ≡

M2

2ps
.Therefore, in the asymptotic region ps � M the terms involving M e�ectively act as ±iηprescriptions for the propagation of exotic, high-energy excitations on the light cone, withthe large lifetimes

τ = τ (ps) ≈
ps
M2

.Both ε and η (ps) are positive quantities, but ε is in�nitesimal, while η (ps) is small and �nite.Since η (ps) → 0 for ps → +∞, there is a pinch singularity of the pole located in the �rstquadrant with the two poles located in the forth quadrant, and a similar pinch singularityof the pole located in the third quadrant with the two poles located in the second quadrant.The violations of power counting that we �nd in the next sections can be traced back to thispinching and ultimately to the presence of both the +iη and −iη terms at ps � M .3 Bubble diagramsIn this section we compute the nonlocal divergent parts of higher-derivative, one-loop scalarbubble diagrams in six and four dimensions, with trivial and nontrivial numerators.As usual, the ultraviolet divergent part is a sum of powerlike divergences and logarithmicdivergences. The powerlike divergences are less interesting than the logarithmic ones for thepurpose of singling out inconsistencies, because they depend on the subtraction scheme andcan be removed in a renormalization-group invariant way. The one-loop logarithmic diver-gences, on the contrary, do not depend on the regularization scheme, and provide meaningfultests of the locality of counterterms. For these reasons, we focus our attention mostly onthem. We either use the dimensional regularization technique or a sharp cuto� ΛUV on thespace momenta of the loops, according to convenience. We always convert the outcome tothe cuto� notation.3.1 Bubble diagram in six dimensionsThe bubble diagram with di�erent masses in D spacetime dimensions gives the loop integral
Σ(p) =

∫

ks6ΛUV

dD−1k

(2π)D−1

+∞
∫

−∞

dk0
2π

S (k,m1)S (k − p,m2) , (3.1)5
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where S (p,m) is given in formula (2.2), ΛUV is an ultraviolet cuto� on the space momenta
k and ks = |k|.Since the higher-derivative theory is relativistically invariant, Σ(p) is expected to be afunction of p2 only1. It is then convenient to consider a timelike external momentum, p2 > 0,and select a Lorentz frame in which pµ has only the time component, pµ = (p0, 0). Oncethe loop integral is evaluated, we can retrieve the Lorentz invariant result by means of thereplacement p20 → p2. The values of the bubble for a spacelike external momentum, p2 < 0,are obtained by means of the analytic continuation in p2.The �rst step is to integrate k0 over the real line, which we can make in two equivalentways. The �rst method is by applying the residue theorem, after closing the integration pathwith a semicircle at in�nity, say in the upper half k0 plane. The second method involves thepartial fractioning in k0. Since there are only simple poles for p0 6= 0, one ends up with a k0integrand of the form:

12
∑

i=1

ci
k0 − si

,where si are the poles of the propagators and ci are coe�cients that depend on the noninte-grated variables ks, p0, m1, m2,M . Since each propagator contains six poles, there are twelveterms in total. Then, one integrates over k0 term by term. In practice, 1/ (k0 − s) gives ±iπ,depending on whether Im s > 0 or Im s < 0.The next step is to integrate over the space momentum k. The angular integration istrivial, because of our choice of the Lorenz frame, and gives the volume ΩD−2 of the unitsphere in D − 2 dimensions.Since we are only interested in the ultraviolet divergences for ks → ∞, we expand theintegrand for large ks, in order to avoid special functions due to the ks integral. Considerthe residues calculated at the �rst step. In each of them, either k2 or (k − p)2 is equalto a constant. The two cases are symmetrical, so we just assume k2=constant. Then, thepropagator S (k,m1) gives a contribution ∼ 1/ks for large ks, by formula (2.4). Instead,the propagator S (k − p,m2) behaves as 1/((k − p)2)3 ∼ 1/(p · k)3 ∼ 1/k3
s (having used

p · k = p0k0). The product of the two behaves as 1/k4
s , so the ks integral diverges like

∫ ΛUV kD−2
s dks
k4
s

.1To be rigorous, one should use an ultraviolet regularization that preserves Lorentz invariance, such asthe dimensional regularization, instead of a cuto� on the space momenta. However, we are only interestedin the logarithmic divergences, which, as already noted, are independent of this choice.6
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However, it is easy to check that the contributions of such type coming from the poleswith k2 =constant compensate analogous contributions coming from the poles with (k −
p)2 =constant. In the end, the integrand of (3.1) behaves as 1/k5

s , so we �nd that theleading Σ divergence is proportional to
∫ ΛUV dks

k7−D
s

.We conclude that for D < 6 the bubble diagram is ultraviolet �nite, while it is divergent for
D > 6. In particular, at D = 6 there is a logarithmic divergence,

∫ ΛUV

M

dks
ks

=
1

2
ln

(

Λ2
UV

M2

)

,which leads to the �nal result
Σ(p) =

1

12(4π)3
M6

(M2 + im2
1) (M

2 + im2
2)

{

1

(p2)2
[

m4
1 +m4

2 − 4iM2(m2
1 +m2

2)− 6M4
]

+

+
3i

p2
[

2M2 + i(m2
1 +m2

2)
]

}

log

(

Λ2
UV

M2

)

+ (finite), (3.2)where by �finite� we mean terms that are �nite or in�nitesimal for ΛUV → +∞.The divergent part is nonlocal, equal to the sum of a term proportional to 1/(p2)2 plusa term proportional to 1/p2. Di�erently from the usual divergences of local theories, whichare anti-Hermitian, the ones of (3.2) are not, since the coe�cients have nontrivial real andimaginary parts. For these reasons, we cannot absorb the divergent part in the usual way,by shifting the bare masses, rescaling the bare �elds and adding new local, Hermitian termsto the Lagrangian. We cannot even add nonlocal Hermitian terms. We conclude that thelocality and Hermiticity of counterterms are both violated.Since we are exploring an uncharted territory, we wish to make an explicit check ofLorentz invariance and analyticity. We consider the usual bubble in the case p2 < 0, bytaking pµ = (0,ps). As in the previous computation, we integrate over k0 by means ofthe residue theorem or the partial fractioning in k0. Then we have to integrate over theangles, which is a nontrivial operation now. Writing kµ = (k0,ks), we switch to sphericalcoordinates, letting θ denote the angle between ps and ks. The integral over the remainingthree angles is trivial, which leads to the replacement
d5ks → 2π2dksk

4
s

(

1− u2
)

du,7
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where u ≡ cos θ. At this point, we should expand the integrand for large ks. This cannot bedone naively without generating u poles. For example, consider a typical denominator thatis met in the calculation, such as
1

2uksps − p2s − 2iM2
. (3.3)If we expand it for large ks, we obtain a divergent u integral. However, according to (3.3),the u pole has a positive imaginary part. If we �rst replace u by u − iε, with ε arbitrarilysmall, then the expansion for large ks is safe. So doing, no �ctitious singularity is generated.The procedure works as long as the integrand can be arranged so that the powers 1/(u−

iε)n do not mix with the powers 1/(u+ iε)n. It can be shown that the bubble diagram hasthis property. Carrying on the computation to the end, we �nd (3.2) again.3.2 Bubble diagram in four dimensionsAs shown in the previous section, the bubble diagram with unit numerator has nonlocaldivergences only in dimensions D > 6. On the other hand, bubble diagrams with nontrivialnumerators may have nonlocal divergences also in four dimensions. In this section we studytypical one-loop integrals of this type. Their applications to higher-derivative gravity will beconsidered in subsection 6.We assume that the propagator has again the form (2.2) and the vertices contain anarbitrary number of derivatives. We study the scalar integrals
Ir,n(p) ≡

∫

dDk

(2π)D
(k · p)r(k2)nS(k,m)S(p− k,m). (3.4)The nonlocal divergent part can be calculated with the method explained in the previoussubsection. We set p2 > 0 and choose pµ = (p0, 0). First, we integrate on the energy bymeans of the residue theorem, closing the integration path on the upper half complex plane.In appendix A we show that, if we use the dimensional regularization, the energy integralcan always be evaluated by summing the residues, even when it is divergent, because thecontribution of the integration path at in�nity is always zero.Then, we remain with the integral on the space momentum k. The logarithmic nonlocaldivergences Inldr,n of Ir,n are obtained by expanding the integrand in powers of the absolutevalue ks = |k| and isolating the contributions proportional to dks/ks.We report results in various cases, starting from the massless limit. There, we �nd

Inldr,n = cr,n

(−iM2

2

)r+n
M2

(4π)2p2
log

(

Λ2
UV

M2

)

, (3.5)8
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where cr,n are positive integer numbers. As anticipated, the pole 1/(4−D) of the dimensionalregularization has been converted into the logarithm log(ΛUV /M) of a generic ultravioletcuto� ΛUV divided by M . The lowest-order coe�cients are
c0,0=0, c0,1 = 1, c1,0 = 0, c1,1 = 3, c1,2 = 2, c2,1 = 1, c2,2 = 14,

c3,1=15, c1,3 = 12, c2,3 = 4, c3,2 = 2, c3,3 = 60. (3.6)These results may be justi�ed by evaluating the residues associated with the propagatorsof Ir,n, as explained in subsection 3.1. The residues with k2 =constant have a super�cialdegree of divergence ω1 = D−5+r, whereD−1 powers come from the ks integration measure,
−1 and −3 from the propagators and r from the numerator. Instead, the residues with
(k − p)2 =constant have degree of divergence ω2 = D−5+r+n, where the n additional powerscome from the numerator, using k2 ∼ 2k · p. For r = 1, n = 0, we have ω1 = ω2 = D − 4,so ultraviolet logarithmic divergences are expected from both types of residues in D = 4.However, formula (3.6) shows that the coe�cient c1,0 vanishes. This may be interpretedas an eikonal cancellation between the two types of residues. For r = 0, n = 1, we have
ω2 > ω1 = D − 4, so the cancellation cannot occur in D = 4. Indeed, c0,1 is di�erent fromzero. More generally, cancellations between the ultraviolet divergences of the residues areunlikely to occur for n > 0. Indeed, all the coe�cients (3.6) with n > 0 are nonvanishing.In the massive case, we �nd formula (3.5) with coe�cients cr,n that depend on m/M .The lowest-order ones are

c0,1 =
M2

M2 + im2
, c1,1 =

3M2 + im2

M2 + im2
, c1,2 = 2

(

1 +
im2

M2

)

.Instead, if we replace the propagators S(p,m) with the more general ones
S(p,m, µ) =

1

p2 −m2 + iε

M4

(p2 − µ2)2 +M4
,we obtain formula (3.5) with

c0,1=
M2

M2 + i∆m2
, c1,1 =

3M2 + i∆m2

M2 + i∆m2
,

c1,2=2

(

1 +
i∆m2

M2
+

6iµ2

M2 + i∆m2
− 2µ2∆m2

M2(M2 + i∆m2)

)

,where ∆m2 = m2 − µ2.We see that the locality and Hermiticity of counterterms are violated again. The nonlocalbehavior is always of the form 1/p2, but it must be recalled that the integrals (3.4) contain
r powers of pµ in the numerator, through the term (k · p)r. If we divide by those powers, thetrue nonlocal behavior of the divergent part is ∼ 1/(p2)(2+r)/2.9
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4 Triangle diagramsIn this section we consider the one-loop three-point function. A peculiar, double-logarithmicstructure
ln

(

Q2

µ2

)

ln

(

Λ2
UV

M2

)is found, coming from the overlap between the collinear (infrared) region µ2 � k2
⊥ � Q2and the ultraviolet region M2 � k2

s � Λ2
UV , where k⊥ is the transverse loop momentum, Qis the hard scale and µ is the virtuality of external legs.As in the case of the bubble diagram, in order to e�ectively generate such divergences,we need to introduce nontrivial numerators, which we assume to be scalar for simplicity.Speci�cally, we consider the following three-index family of amplitudes:

Ir,n,t (p1, p2) =

∫

dDk

(2π)D
(k · p1)r(k2)n(k · p2)tS(k,m)S (k + p1, m)S (k + p2, m) . (4.1)The nonlocal divergent part Inldr,n,t can be calculated with a procedure similar to the one ofthe bubble diagram. First, we use Lorentz invariance and analyticity to impose that theincoming momenta are all timelike, i.e.
p21 > 0, p22 > 0, (p1 − p2)

2 > 0, (4.2)and choose pµ1 = (E1, 0), while pµ2 = (E2,p2) remains generic. Then, we integrate on theenergy k0 by means of the residue theorem or a partial fractioning. At that point, we expandthe integrand in powers of 1/ks for ks large and integrate term by term over u = cos θ, θbeing the angle between the vectors p2 and k. When the conditions (4.2) hold, this operationis safe. Indeed, the expansion highlights factors
1

(p1 · k)3
=

1

(E1k0)3
∼ 1

(E1ks)3
,

1

(p2 · k)3
=

1

(E2k0 − p2 · k)3
∼ 1

k3
s(±E2 − p2su)3

, (4.3)
1

[(p1 − p2) · k]3
∼ 1

k3
s(±E1 ∓E2 + p2su)3

,where p2s = |p2|. The subleading corrections have denominators that are equal to powers ofthose shown in formula (4.3). We see that every term of the expansion leads to a regular uintegral. At the end, the logarithmic divergences are the coe�cients of dks/ks.10
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The symmetry relation Inldr,n,t (p1, p2) = Inldt,n,r (p2, p1) obviously holds, so we can assume,for example, r > t. By explicit calculation of Ir,n,t for di�erent values of its indices, we �ndthat
Inldr,n,t (p1, p2) = 0 unless r + n+ t > 4. (4.4)This result may be justi�ed by evaluating the residues associated with the propagators of

Ir,n,t, as explained in subsection 3.1. The residues with k2 =constant have a super�cialdegree of divergence ω0 = D − 8 + r + t, while the residues with (k + p1)
2 =constant and

(k + p2)
2 =constant have the generally larger degrees ω1,2 = D − 8 + r + n + t. Barringcancellations, the degree of divergence of Ir,n,t at D = 4 is ω = r + n + t − 4, which isnonnegative when r + n + t > 4.Now we report the results of explicit calculations that con�rm that Ir,n,t is indeed nonlo-cally divergent when the inequality of (4.4) holds. We begin with the massless case m = 0.The simplest nontrivial integral is

Inld1,2,1 (p1, p2) = −i
M8

128π2

1

Q2
log

(

Λ2UV
M2

)

, (4.5)where we have de�ned Q2 ≡ −(p2−p1)
2. The term 1/Q2 is reminiscent of the pole-dominancemodels of form factors and seems to signal � if we insist with some physical interpretation� the propagation of a massless particle in the t-channel, with an ultraviolet logarithmicallydivergent coe�cient.A more interesting case is provided by the amplitude

Inld2,2,0 (p1, p2) =
iM8

128π2

[

F (Q, p1, p2)−
1

Q2

]

log

(

Λ2
UV

M2

)

, (4.6)where
F (Q, p1, p2) =

2
√

(Q2 + p21 + p22)
2 − 4p21p

2
2

arctanh√(Q2 + p21 + p22)
2 − 4p21p

2
2

Q2 + p21 − p22
.In order to understand the dynamic properties of the �rst term of formula (4.6) (the secondterm has the same form as the one of the previous amplitude), let us assume the kinematicsof the Deep Inelastic Scattering, i.e.

Q2 �
∣

∣p21
∣

∣ ≈
∣

∣p22
∣

∣ 6= 0.11
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Infrared singularities (soft and/or collinear) are then regulated by nonzero virtualities of theexternal legs. Using the asymptotic expansionarctanh(x) = −1

2
ln

(

1− x

2

)

+ O(1− x) for x . 1,it is easy to show that
F (Q, p1, p2) '

1

Q2
ln

(

Q2

µ2
2

)

, (4.7)where we have de�ned
µ2
i ≡ −p2i > 0, i = 1, 2.It is convenient to assume µ2

2 > 0 in order to have a real logarithm and then avoid absorptiveparts related to the �decay� of the p2 leg. Formula (4.7) exhibits a collinear divergence for
µ2
2 → 0 (or, equivalently,Q2 → +∞), which overlaps the nonlocal divergence already found inthe previous cases. The asymmetry of the result, namely the absence of a collinear singularityfor µ2

1 → 0, is related to the fact that the power (k · p1)2 appearing in the numerator screensthe singularity related to the emission of a particle collinear to the particle with momentum
p1. In the case of the previous amplitude I1,2,1, collinear singularities related to the emissionfrom any leg were screened by the factor (k ·p1)(k ·p2) in the numerator. By generalizing theexample just discussed, we expect that nonlocal divergences overlap the usual, logarithmicinfrared singularities found in vertex functions.It is natural to expect that nonlocal divergences also occur in one-loop box diagrams,pentagon diagrams, etc., and that they overlap the usual logarithmic structures (infrareddivergences, small-x logarithms, etc.).We conclude by brie�y reporting results concerning the massive case m 6= 0. In both
Inld1,2,1 and Inld2,2,0, it is su�cient to replace M8 with M10/(M2 + im2) in formulas (4.5) and(4.6).5 Power counting for nonlocal divergencesThe standard loop integrals in Minkowski spacetime are related to Euclidean integrals bythe Wick rotation, so the power counting rules governing their ultraviolet behaviors are thesame. This fact is actually far from trivial. A Minkowski integral

∫

dDk

(2π)D

∏

i
∆(k − pi, mi)12
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is intuitively expected to be more singular than the corresponding Euclidean integral in theultraviolet region. Because of the Euclidean metric, the Euclidean integrand falls o� whenany component of the momentum kµ gets large. At �rst sight, the Minkowski pseudometricfails to provide an equivalent suppression in several subdomains of integration, such as theregions where the loop momentum is close to cones of the form k2+a ·k+ b = 0 (determinedby the poles of the propagators), where a is a vector and b is a constant. The reason why thisintuitive argument is not correct is that it overlooks the role played by the +iε prescription,which allows the Wick rotation.On the other hand, the higher-derivative propagator S(k,m) has poles in all quadrants, sothe analytic continuation to Euclidean space is not possible. Then, the rules of power count-ing are no longer guaranteed to coincide in Minkowski and Euclidean spaces and actuallyturn out to be di�erent.To illustrate this fact, we work out a formula for the degree of divergence of a genericone-loop diagram in Minkowski higher-derivative theories. Assume that the propagators
S(k,m) behave like 1/(k2)N for large |k2| and that the vertices contain up to N ′ derivatives.Consider a one-particle irreducible diagram with V vertices, equal to the number of internallines. We assume that V > 1, i.e. exclude the tadpoles, because they are independent of theexternal momenta and cannot originate nonlocal divergences.Letting k denote the loop momentum, we integrate over the energy k0 by means of theresidue theorem. In each residue, (k − q)2 is equal to some constant, q being a linear com-bination of external momenta. Making a translation, we can assume that the integrand isevaluated at k2 =constant. Then, by formula (2.4) the propagator S(k,m) gives a contribu-tion that behaves like 1/ks for large ks, while each one of the other V −1 propagators behaveslike 1/((p−k)2)N ∼ 1/(p ·k)N , where p is also a linear combination of the external momenta.If we use analyticity to assume p2 > 0, the factors 1/(p · k)N are regular everywhere.On the other hand, the vertices provide at most N ′V powers of ks and the integrationmeasure is kD−2

s dks. Collecting these pieces of information, the degree of divergence ωnl ofthe ks integral is equal to
ωnl = D − 1 +N ′V − 1− (V − 1)N = D − 2 +N + V (N ′ −N). (5.1)An integral with ωnl < 0 is ultraviolet convergent, while an integral with ωnl > 0 may bedivergent. The divergent parts are in general nonlocal, because, as shown in formula (4.3),the large ks expansion makes the ratios 1/(p · k)N factorise as 1/kN

s times nonpolynomialfunctions of the external momenta. 13
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The condition ωnl > 0 is necessary to have a divergence, but not su�cient. In manycases, it is possible to enhance it by means of more sophisticated arguments. For example,it is possible to show that the bubble diagram (V = 2) bene�ts from an enhancement of oneunit when N is odd. Then,
ω′nl = D − 3 + 2N ′ −N. (5.2)The reason is a simpli�cation between the contributions ∼ 1/(p · k)N of each propagator,calculated on the poles of the other propagator.If D = 6, N = 3, N ′ = 0, V = 2, which is the case treated in subsection 3.1, wehave ω′nl = 0, which con�rms that there is a logarithmic divergence. The same diagram infour dimensions has no nonlocal divergences (ω′nl = −2), unless we equip it with nontrivialnumerators. If we take N ′ = 1, we raise ω′nl to 0, which is con�rmed by the nonvanishingcoe�cient c0,1 of formula (3.6). On the other hand, it is not enough to have a vertex withone derivative and a vertex with no derivatives (which can be formally obtained by setting

N ′ = 1/2), as the vanishing of the coe�cient c1,0 con�rms.In the case of the triangle diagram (D = 4, N = 3 and V = 3), we may distribute the
r + 2n + t derivatives over the three vertices by formally writing N ′ = (r + 2n + t)/3. Theintegrals Inld1,2,1 and Inld2,2,0 have N ′ = 2 and ωnl > 0, indeed formulas (4.5) and (4.6) shows thatthey are divergent. Moreover, r + 2n + t < 4 implies ωnl < 0, which agrees with formula(4.4). A better agreement can be obtained by improving the power counting as shown insection 4. Indeed, after a residue is evaluated, a k2 factor in the numerator does not providetwo powers of ks, but one at most. This is equivalent to setting N ′ = (r + n + t)/3. Then,formula (4.4) follows in all cases, while both Inld1,2,1 and Inld2,2,0 have N ′ = 4/3, ωnl = 0, whichimplies that the ultraviolet divergence is at most logarithmic, as is actually the case.Let us inquire which theories have no nonlocal divergences, i.e. when ωnl < 0 for every
V > 1. Formula (5.1) shows that this happens when D − 2 < N − 2N ′, which is a veryrestrictive condition. Higher-derivative theories of gauge �elds have N ′ = 2N−1, while thoseof gravity have N ′ = 2N , so neither of the two satis�es the condition. Both are expected tohave nonlocal divergences, if their propagators have poles in the �rst or third quadrants. Inthe next section we study the case of gravity explicitly.6 Higher derivative gravityIn this section we use the results of the previous ones to work out the nonlocal divergencesof the graviton two point function in a relatively simple model of four dimensional higher-14
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derivative gravity with complex poles. We simplify the calculations as much as possible bychoosing a speci�c Lagrangian and a convenient gauge �xing. The loop integrals are linearcombinations of the scalar integrals (3.4).The simplest model of higher-derivative gravity is the Stelle theory [2], which containsthe scalars R, R2 and RµνR
µν . However, it is not suitable for our investigation, because itspropagators do not have poles in the �rst or third quadrants. The simplest model with thefeatures we need is the one with Lagrangian

LHD = −
√−g

2κ2

[

R− 1

M4
(DρRµν)(D

ρRµν) +
1

2M4
(DρR)(DρR)

]

. (6.1)We expand the metric tensor gµν around the �at-space metric ηµν =diag(1,−1,−1,−1) bywriting
gµν = ηµν + 2κhµν ,where κ is a constant of dimension −1 in units of mass and hµν is the quantum �uctuation.After the expansion around �at space, we raise and lower the indices by means of the �at-space metric. We further de�ne h ≡ hµ

µ.We choose the De Donder gauge-�xing function
Gµ(g) = ηνρ∂ρgµν −

1

2
ηνρ∂µgνρ = κ(2∂νh

ν
µ − ∂µh) (6.2)and perform the gauge �xing as explained in appendix B. The gauge-�xed Lagrangian thenreads

Lgrav = LHD +
1

4κ2
G
µ

(

1 +
�2

M4

)

Gµ + Lgh, (6.3)where � = ηµν∂µ∂ν is the �at-space D'Alembertian, while the ghost Lagrangian is
Lgh = C̄µ

(

1 +
�2

M4

)

[

�Cµ − (2δρµη
νσ∂ν − ηρσ∂µ)Γ

α
ρσCα

]

. (6.4)The graviton propagator
〈hµν(p)hρσ(−p)〉0 =

iM4

2(p2 + iε)

ηµρηνσ + ηµσηνρ − ηµνηρσ
(p2)2 +M4has the same form as that of the propagators of the previous sections, apart from the constantmatrices in the numerator.The ghost sector can be ignored, because it cannot violate the locality of counterterms atone loop. Indeed, after the rede�nition C̄µ′ = (1 +�2/M4) C̄µ, the ghost Lagrangian (6.4)turns into the usual one, which is

Lgh = C̄µ′
[

�Cµ − (2δρµη
νσ∂ν − ηρσ∂µ)Γ

α
ρσCα

]

.15
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For this reason, the ghost contribution to the graviton self-energy coincides with the usualone, which has a local divergent part.It is su�cient to work out the three-graviton vertex, since the one-loop diagrams involvingfour-leg vertices are tadpoles, which can only have local divergent parts. In the end, we justevaluate two diagrams, which are
(a)

h h

(b)

K C (6.5)where the wiggled line represents the graviton hµν , the solid line represents the source Kµνcoupled to the hµν transformation and the continuous line with the arrow represents theghosts. Diagram (a) encodes the nonlocal divergences of the graviton self energy. Diagram(b) encodes the nonlocal renormalization of the hµν transformation: it is necessary to derivethe corrections to the Ward identities satis�ed by (a), as explained in appendix B.6.1 ResultsGiven these ingredients, we are ready to perform the calculation, as well as the consistencychecks. We can reduce to the scalar integrals Ir,n of formula (3.4) by means of the Passarino-Veltman decomposition [5], which gives identities such as
Iµ1···µn

(p) ≡
∫

dDk

(2π)D
kµ1 · · · kµn f(k2, p · k) =

∑

i

Ai(p) T
µ1···µn

i (p), (6.6)where Ai(p) are scalar integrals and T µ1···µn

i (p) are completely symmetric tensors built with
ηµν and pµ. Since the graviton two-point functions has four indices, we just need formula(6.6) for n = 1, 2, 3, 4. The cases n = 1, 2 give, for example,
Iµ=

pµ

p2

∫

dDk

(2π)D
(p · k)f(k2, p · k),

Iµν =
ηµν

3

∫

dDk

(2π)D

[

k2 − (p · k)2
p2

]

f(k2, p · k)− pµpν

3p2

∫

dDk

(2π)D

[

k2 − 4
(p · k)2

p2

]

f(k2, p · k).16
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The one-loop nonlocal divergent part of the graviton two-point function is equal to
〈hµν(p)hρσ(−p)〉nld1 =

κ2M8

240π2(p2)2
[(68r + i)(ηµρηνσ + ηνρηµσ) + (373r − 4i)ηµνηρσ

− 1

8p2
(125ir2 + 544r + 8i) (pµpρηνσ + pµpσηνρ + pνpρηµσ + pνpσηµρ)

+
1

4p2
(255ir2 − 1522r + 36i) (pµpνηρσ + pρpσηµν)

− 1

2(p2)2
(185r3 + 75ir2 − 1048r + 24i)pµpνpρpσ

]

ln

(

Λ2
UV

M2

)

, (6.7)where r ≡ p2/M2. It is easy to check that it is doubly transverse, i.e.
pνpσ〈hµν(p)hρσ(−p)〉nld1 = 0up to local terms. However, it is not transverse, since pν〈hµν(p)hρσ(−p)〉nld1 does not vanish.The reason is that the gauge transformation is itself a�ected by nonlocal divergences. Thecorrect Ward identity is (B.5), derived from diagram (b) as explained in appendix B. It iseasy to show that (6.7) does satisfy (B.5), which provides a good check of the result.Coherently with what we found in the previous sections, the divergences are nonlocal andtruly complex. It is impossible to subtract them away by means of reparametrizations and(local as well as nonlocal) �eld rede�nitions that preserve Hermiticity.In conclusion, Minkowski higher-derivative theories of gravity violate the locality andHermiticity of counterterms, when the propagators have poles in the �rst or third quadrants.Gauge symmetries are unable to protect those properties.7 ConclusionsWe have shown that Minkowski higher-derivative quantum �eld theories whose propaga-tors have complex poles are generically inconsistent, because they generate nonlocal, non-Hermitian ultraviolet divergences. Bubble diagrams, for example, contain logarithmic di-vergences multiplied by inverse powers of D'Alembertians. Triangle diagrams present moreinvolved nonlocal divergences, where ultraviolet e�ects mix with standard infrared e�ects.Contrary to intuitive expectations, the introduction of higher derivative terms in theLagrangian does not have a regulating e�ect, because the constraints coming from powercounting are much weaker. Indeed, the contribution of one propagator calculated on thepole of another propagator does not decay fast enough. This unusual behavior can also be17
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explained by the appearance of pinch singularities, unrelated to the usual absorptive parts ofamplitudes, which occur because the extra excitations introduced by the higher derivativescome with e�ective prescriptions of both signs.We have extended the calculations to higher-derivative quantum gravity and proved,in particular, that gauge symmetries are unable to protect the locality and Hermiticity ofcounterterms. The problems we have outlined add up to the well-known problems thathigher-derivative Minkowski theories have with perturbative unitarity.AcknowledgmentsOne of us (D.A.) is grateful to M. Piva for useful discussions.A Residue theorem in dimensional regularizationIn this appendix we show that the dimensional regularization allows us to evaluate the energyintegrals in a straightforward way, even when they are divergent: it is su�cient to sum theresidues, while the contribution of the integration path at in�nity is always negligible.The dimensional regularization is de�ned as follows. The integral on the space momentais continued to D−1 dimensions and done �rst. The energy integral is not modi�ed and donesecond. Strictly speaking, the two can be exchanged when the energy integral is convergent.However, we show that it is always legitimate to integrate on the energy �rst, if we applythe residue theorem.Without loss of generality, we can write a one-loop integral as a linear combination ofintegrals of the form
∫ +∞

−∞

dE

2π

∫

dD−1k

(2π)D−1

a(k)Es

E2r +
∑2r

i=1 bi(k)E
2r−iwhere a(k), bi(k) are polynomials of k and r > 1, s > 0 are integers. The denominatorscontain the prescriptions to move the poles away from the real axis.The energy integral is divergent if s+1 > 2r, so we write s = 2r+n− 1 and take n > 0.When |E| is much larger than all the other scales, its divergent contributions are

∫

|E|∼∞

dE

2π

∫

dD−1k

(2π)D−1
a(k)En−1

(

1−
2r
∑

i=1

bi(k)

Ei
−

2r
∑

i,j=1

bi(k)bj(k)

Ei+j
+ · · ·

)

.All of the k integrals are integrals of polynomials of k and give zero by the rules of thedimensional regularization. Thus, if we close the integration path by means of a semicircle18
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at in�nity, in the lower or upper half plane, we add a vanishing contribution. This allowsus to safely apply the residue theorem without having to worry about the closure of theintegration path.B Gauge �xing and WTST identities in higher-derivativegravityTo handle the WTST identities [4] of quantum gravity in a compact form, we use the Batalin-Vilkovisky formalism [6]. We collect the �elds into the row
Φα = {hµν , Cµ, C̄µ, Bµ},where Cµ, C̄µ and Bµ are the ghosts and the antighosts of di�eomorphisms and the Lagrangemultipliers for the gauge �xing, respectively. We introduce conjugate sources
Kα = {Kµν , Kµ

C , K
µ

C̄
, Kµ

B}and de�ne the antiparentheses of two functionals X and Y of Φ and K as
(X, Y ) ≡

∫
(

δrX

δΦα

δlY

δKα

− δrX

δKα

δlY

δΦα

)

,where the integral is over the spacetime points associated with repeated indices and thesubscripts l, r in δl, δr denote the left and right functional derivatives, respectively.The total action is then
S(Φ, K) = SHD + (SK ,Ψ) + SK ,where SHD =

∫

LHD is the classical action, Ψ(Φ) is a functional of the �elds that performsthe gauge �xing, called gauge fermion, and the terms
SK = −

∫

(∂µCν + ∂νCµ − 2Γρ
µνCρ)K

µν +

∫

gνρCρ [(∂µCν) + gσαCα(∂σgµν)]K
µ
C −

∫

BµK
µ

C̄collect the symmetry transformations coupled to the external sources K. The Lagrangian
LHD is given by formula (6.1).The action S satis�es the master equation

(S, S) = 0, (B.1)19
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which collects the gauge invariance of SHD and the closure of the symmetry transformations.The generating functional Z of the correlation functions and the generating functional
W of the connected correlation functions are de�ned by the formulas

Z(J,K) =

∫

[dΦ] exp

(

iS(Φ, K) + i

∫

ΦαJα

)

= exp iW (J,K),while the generating functional Γ(Φ, K) = W (J,K)−
∫

ΦαJα of the one-particle irreduciblediagrams is the Legendre transform of W (J,K) with respect to J . Formula (B.1) impliesthat Γ satis�es an identical master equation
(Γ,Γ) = 0, (B.2)which collects the WTST identities in a compact form.We choose the gauge fermion

Ψ = −1

2

∫

C̄µ

(

1 +
�2

M4

)(

1

2
Bµ −

1

κ
Gµ

)

,where Gµ is given in formula (6.2). Observe that the indices of all the �elds Φα and thesources Kα are raised and lowered by means of the �at-space metric. We �nd
(SK ,Ψ) = −1

4

∫

Bµ

(

1 +
�2

M4

)

Bµ +
1

2κ

∫

Bµ

(

1 +
�2

M4

)

Gµ + Sgh,where Sgh =
∫

Lgh and Lgh is given in formula (6.4). We can integrate Bµ out, which isequivalent to replacing it with the solution of its own �eld equation:
Bµ =

1

κ
Gµ.So doing, we get

(SK ,Ψ) → 1

4κ2

∫

Gµ

(

1 +
�2

M4

)

Gµ + Sgh.The gauge-�xed Lagrangian is thus (6.3).Now we work out the WTST identity satis�ed by the graviton two-point function. Expandthe functional Γ as
Γ = S + Γ1 + Γ2 + · · · ,where Γi collects the contributions of the i-loop diagrams. Note that Γi cannot depend on

B, KC̄ and KB, because no one-particle irreducible diagrams can be built with external legsof this type. The master equation (B.2) gives, at one loop,
(S,Γ1) = 0.20
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Expanding the antiparentheses on the left-hand side of this equation and setting C̄ = B =

K = 0, we get
∫

δSHD
δhµν

δlΓ1

δKµν

∣

∣

∣

∣

C̄=B=K=0

=

∫

δrSK

δKµν

δlΓ1

δhµν

∣

∣

∣

∣

C̄=B=K=0

. (B.3)This identity encodes the modi�ed gauge invariance of the classical action SHD. Indeed, ithas the form
∫

δSHD
δhµν

∆1hµν +

∫

δΓ̃1

δhµν
∆0hµν = 0, (B.4)where Γ̃1 = Γ1|C̄=B=K=0 and

∆0hµν = − δrSK

δKµν
= ∂µCν + ∂νCµ − 2Γρ

µνCρ, ∆1hµν =
δlΓ1

δKµν

∣

∣

∣

∣

C̄=B=K=0

.In turn, the gauge invariance of SHD, combined with formula (B.4), gives
∫

δ(SHD + Γ̃1)

δhµν
(∆0hµν +∆1hµν) = 0,up to two-loop corrections. This identity states that the corrected action SHD+Γ̃1 is invariantunder the corrected gauge transformations∆hµν = ∆0hµν+∆1hµν . The derivatives δΓ̃1/δhµνand δlΓ1/δK

µν |C̄=B=K=0 are calculated through the diagrams (a) and (b) shown in (6.5),respectively.Precisely, we can write
Γ̃1=−i

∫

hµν(x)〈hµν(x)〉1PI1 dDx− i

2

∫

hµν(x)〈hµν(x)hρσ(y)〉1PI1 hρσ(y)dDxdDy + O(h3),

∆1hµν =
δlΓ1

δKµν

∣

∣

∣

∣

C̄=B=K=0

=
δlW1

δKµν

∣

∣

∣

∣

C̄=B=K=0

= 〈∂µCν + ∂νCµ〉1PI1,J − 2〈Γρ
µνCρ〉1PI1,J + O(Ch),where the one-loop correlation functions 〈· · ·〉1,J are evaluated at nonvanishing externalsources J .Note that 〈hµν 〉1PI1 has no nonlocal divergences, because it is a tadpole. On the other hand,

〈∂µCν 〉1PI1,J = 0, because the insertion is linear in the �elds. As far as the term −2〈Γρ
µνCρ〉1PI1,Jis concerned, we are just interested into its nonlocal divergent part to the zeroth order in

hµν , which we denote by ∆1hµν |nldh=0. We get, in momentum space,
∆1hµν |nldh=0 (p) = − κ2M8

96π2(p2)4
[

(3ir2 + 2r − 2i)p2(pµδ
ρ
ν + pνδ

ρ
µ)

+ p2(3r − 2i)pρηµν + 4(−4r + 3i)pρpµpν
]

Cρ(p) ln

(

Λ2
UV

M2

)

,21
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where r = p2/M2. The quadratic part of SHD is, in momentum space,
1

4

∫

hµν(−p)

[

1 +
(p2)2

M4

]

p2 (ΠµρΠνσ +ΠµσΠνρ − 2ΠµνΠρσ)h
ρσ(p),where Πµν = ηµν − pµpν/p

2. Inserting these expression in (B.3), we �nd the Ward identity
pν〈hµν(p)hρσ(−p)〉nld1 = −

(

ηρσp
2 − pρpσ

)

pµ
κ2M8

96π2(p2)3
(

1 + r2
)

(3r − 2i) ln

(

Λ2
UV

M2

)
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