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Some Reference FormulasFor The Generating FunctionsOf Canonical TransformationsDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italydamiano.anselmi@unipi.itAbstractWe study some properties of the canonical transformations in classical mechanics and quantum�eld theory and give a number of practical formulas concerning their generating functions. First,we give a diagrammatic formula for the perturbative expansion of the composition law aroundthe identity map. Then we propose a standard way to express the generating function of acanonical transformation by means of a certain �componential� map, which obeys the Baker-Campbell-Hausdor� formula. We derive the diagrammatic interpretation of the componentialmap, work out its relation with the solution of the Hamilton-Jacobi equation and derive its time-ordered version. Finally, we generalize the results to the Batalin-Vilkovisky formalism, where theconjugate variables may have both bosonic and fermionic statistics, and describe applications toquantum �eld theory.
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1 IntroductionCanonical transformations have a variety of applications, from classical mechanics to quantum�eld theory. In particular, they play an important role when quantum �eld theory is formu-lated by means of the functional integral and the Batalin-Vilkovisky (BV) formalism [1, 2]. TheBV formalism associates external sources Kα with the �elds Φα and introduces a notion of an-tiparentheses (X,Y ) of functionals X, Y of Φ and K. This formal setup is convenient to treatgeneral gauge theories and study their renormalization, because it collects the Ward-Takahashi-Slavnov-Taylor (WTST) identities [3] in a compact form and relates in a simple way the identitiessatis�ed by the classical action S(Φ,K) to the identities satis�ed by the generating functional
Γ of the one-particle irreducible correlation functions. The canonical transformations, which arethe �eld/source rede�nitions that preserve the antiparentheses, appear in several contexts. Forexample, they provide simple ways to gauge �x the theory and map the WTST identities underarbitrary changes of �eld variables and gauge �xing. Moreover, they are a key ingredient of thesubtraction of divergences.The generating functionals of the canonical transformations used in quantum �eld theory areoften polynomial, and can be composed and inverted with a small e�ort. Nevertheless, there areexceptions. When the theory is nonrenormalizable, for example, as the standard model coupled toquantum gravity, the canonical transformations involved in the subtraction of the divergences arenonpolynomial and arbitrarily complicated. Even when the theory is power counting renormaliz-able, the variety of �elds and sources that are present and their statistics make it useful to havesome shortcuts and practical formulas to handle the basic operations on canonical transformationsin more straightforward ways.In this paper, we collect a number of reference formulas concerning the generating functionsof canonical transformations and give diagrammatic interpretations of their perturbative versions.We �rst work in classical mechanics and then generalize the investigation to the BV formalism.The generalization is actually straightforward, since the operations we de�ne preserve the statisticsof the functionals.In section 2 we start from the composition law, by writing the generating function of thecomposed canonical transformation as the tree-level projection of a suitable functional integral. Sodoing, the perturbative expansion of the result around the identity map can easily be expressed ina diagrammatic form. In section 3 we relate the composition law to the Baker-Campbell-Hausdor�(BCH) formula [4]. We propose a standard way of expressing the generating function of a canonicaltransformation by means of a componential map C(X) such that C−1(X) = C(−X) and C−1(C(X)◦

C(Y )) =BCH(X,Y ). In section 4 we derive the relation between the componential map and thesolution of the Hamilton-Jacobi equation for time-independent Hamiltonians. In section 5 wework out the diagrammatic interpretation of the perturbative expansion of the componential maparound the identity map. In section 6 we generalize the formulas to time-dependent Hamiltonians,2
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which gives the time-ordered version of the componential map. In section 7 we extend the analysisto the BV formalism, where the �elds can have arbitrary statistics. We illustrate a number ofapplications to quantum �eld theory. Section 8 contains the conclusions.2 Composition of canonical transformationsIn this section we study the composition of canonical transformations. We �rst recall the basicformulas for the generating function of the composite canonical transformation, in terms of thegenerating functions of the components. Then we express the result as the tree-level sector ofa functional integral and provide a diagrammatic interpretation of its perturbative expansionaround the identity map.Consider two canonical transformations q1, p1 → q2, p2 and q2, p2 → q3, p3, with generatingfunctions F12(q1, p2) and F23(q2, p3), respectively. It is knownthat the generating function of thecomposite canonical transformation q1, p1 → q3, p3 is

F13(q1, p3) = F12(q1, p2) + F23(q2, p3)− q
i
2p
i
2, (2.1)where qi2 and pi2 are the functions of q1, p3 that extremize the right-hand side.1The proof is straightforward. Extremizing the right-hand side with respect to qi2 and pi2, weobtain

0 =
∂F12

∂pi2
− qi2, 0 =

∂F23

∂qi2
− pi2.Thanks to these equations, the derivatives of F13 with respect to qi1 and pi3 can be worked out bykeeping qj2 and pj2 constant. This gives the relations

∂F13

∂qi1
=
∂F12

∂qi1
= pi1,

∂F13

∂pi3
=
∂F23

∂pi3
= qi3,which prove that F13(q1, p3) is indeed the generating function of the canonical transformation

q1, p1 → q3, p3.We write the composition law as
F13 = F23 ◦ F12, (2.2)in the sense the F12 is the transformation performed �rst and F23 is the one performed last. Inparticular, given a scalar function S1(q1, p1) = S2(q2, p2) = S3(q3, p3), we write

S2 = F12 ◦ S1, S3 = F23 ◦ S2 = F23 ◦ F12 ◦ S1 = F13 ◦ S1.1To our knowledge, very few textbooks report this property. One is ref. [5], where it is ascribed to Hamilton.For a standard derivation, see also [6]. For a derivation from the semiclassical limit of quantum mechanics, see [7].For elaborations from the point of view of symplectic groupoids, see [8].3
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These formulas mean S2(q2, p2) = S1(q1(q2, p2), p1(q2, p2)), etc.If we describe the canonical transformations q1, p1 → q2, p2 and q2, p2 → q3, p3 by means ofgenerating functions G12(q1, q2) and G23(q2, q3), then, following similar steps, it is easy to provethat the composition is generated by

G13(q1, q3) = G12(q1, q2) +G23(q2, q3), (2.3)where q2 is the function of q1, q3 that extremizes the right-hand side.In this paper, we are mostly interested in formulas that may have practical uses in perturbativequantum �eld theory. It is more convenient to describe the canonical transformations q, p→ Q,Pby means of generating functions of the form F (q, P ), rather than G(q,Q), because the formercan easily be expanded around the identity transformation and allow us to express the compositecanonical transformation diagrammatically. It is not possible to achieve these goals in a simpleway with generating functions of the form G(q,Q).To study the expansion around the identity map, write the generating functions F12 and F23as
FA(q, P ) = qiP i +A(q, P ), FB(q, P ) = qiP i +B(q, P ), (2.4)respectively, and their composition F13 as

FC(q, P ) = qiP i + C(q, P ), FC = FB ◦ FA. (2.5)Below we show that the solution C(q, P ) can be written as the tree-level sector of a zero-dimensional functional integral. Thanks to this, the diagrams that contribute to it can easilybe built, according to the following rules. (a) The diagrams, made of lines and vertices, are con-nected and contain no loops. (b) The vertices are of two types, denoted by u and v, and can havearbitrary numbers of legs. (c) Each line of the diagram must connect one vertex of type u withone vertex of type v.By de�nition, we include the diagrams that have no lines, that is to say the vertex u and thevertex v. The number of vertices is called order of the diagram. The absence of loops impliesthat a diagram of order n contains n− 1 lines, with n > 1. Note that there are no external legs.Denote the diagrams of order n by Gnα, where α = 1, · · · , rn is an index that labels them.Call fnα the combinatorial factor of Gnα, which can be calculated with the usual rules, by viewing
Gnα as a Feynman diagram. Associate a function Cnα(q, P ) with Gnα by replacing each vertex uwith the function A(q, P ), each vertex v with the function B(q, P ) and each line with the operator

←−
∂

∂qi

−→
∂

∂P i
, (2.6)where the P derivative acts on the function A attached to the line and the q derivative acts onthe function B attached to the line. We call (2.6) the propagator.4
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Then the formula of the function C(q, P ) is

C(q, P ) =
∞∑

n=1

C(n)(q, P ), C(n)(q, P ) =

rn∑

α=1

fnαCnα(q, P ). (2.7)To prove this result, consider the auxiliary Lagrangian
L(φ,ψ, q, P ) = A(q, P + φ) +B(q + ψ,P )− ψφand the zero-dimensional quantum �eld theory described by L, where φi are ψi are the ��elds�.We focus on the generating function W (q, P ) de�ned by

eW (q,P ) =

∫
[dφdψ]eL(φ,ψ,q,P ).The square brackets around the measure mean that we consider this integral as a functionalintegral, rather than an ordinary one. In other words, we view it as a bookkeeping for generatingdiagrams and making standard operations on diagrams.The propagator of this theory is determined by the last term of L, that is to say −ψφ, so it isequal to 1. Applying the standard Feynman rules, it is easy to check that the diagrams de�nedabove give the tree sector of W (q, P ). Clearly, that sector is equal to the Legendre transform of

L(φ,ψ, q, P ) with respect to φ and ψ, calculated in zero. Precisely, setting
0 =

∂L

∂φi
=

∂A

∂P i
(q, P + φ)− ψi, 0 =

∂L

∂ψi
=
∂B

∂qi
(q + ψ,P ) − φi, (2.8)and denoting the solutions of these conditions by φ∗(q, P ), ψ∗(q, P ), we �nd

L(φ∗, ψ∗, q, P ) = A(q, P + φ∗) +B(q + ψ∗, P )− ψ∗φ∗. (2.9)Now, identify q with q1 and P with p3. Working out q2 and p2 from the canonical transfor-mations generated by FA(q1, p2) and FB(q2, p3), given in (2.4), it is easy to check that
pi2 − p

i
3 =

∂B

∂qi2
(q2, p3), qi2 − q

i
1 =

∂A

∂pi2
(q1, p2). (2.10)On the other hand, formulas (2.8) give

φi∗ =
∂B

∂qi1
(q1 + ψ∗, p3), ψi∗ =

∂A

∂pi3
(q1, p3 + φ∗). (2.11)Expanding (2.10) and (2.11) in powers of A and B and comparing the two outcomes, we get theequalities

φi∗ = pi2 − p
i
3, ψi∗ = qi2 − q

i
1. (2.12)Then using (2.1), (2.4) and (2.5), formula (2.9) gives

L(φ∗, ψ∗, q1, p3) = A(q1, p2) +B(q2, p3)− (qi2 − q
i
1)(p

i
2 − p

i
3) = C(q1, p3).5
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We conclude that C(q, P ) coincides with L(φ∗, ψ∗, q, P ) and is given by the diagrams listedabove, which proves (2.7). We can write

eC(q,P ) =

∫ ′

[dφdψ]eA(q,P+φ)+B(q+ψ,P )−ψφ, (2.13)where the prime on the integral sign means that only the tree contributions are kept.For example, the lowest order diagrams contributing to formula (2.7) are
1
2

1
2

1
3!

1
3!

A

A

A A

A

B

B

B

B

A B A B

A

B

A B B

A

BAB (2.14)More explicitly,
C =A+B +AiB

i +
1

2
AiB

ijAj +
1

2
BiAijB

j +
1

3!
AiAjAkB

ijk +AiB
ijAjkB

k +
1

3!
BiBjBkAijk

+
1

4!
AiAjAkAlB

ijkl +
1

2
AiB

ijAjkB
klAl +

1

2
AiAjAklB

ijkBl

+
1

2
BiBjBklAijkAl +

1

2
BiAijB

jkAklB
l +

1

4!
BiBjBkBlAijkl + · · · , (2.15)where

Ai1···in =
∂nA(q, P )

∂Pi1 · · · ∂Pin
, Bi1···in =

∂nB(q, P )

∂qi1 · · · ∂qin
.A simple case is when A(q, P ) = u(q) + f i(q)P i for some functions u(q) and f i(q). Then thediagrams give a Taylor expansion that can easily be resummed into

C(q, P ) = A(q, P ) +B(qi + f i(q), P ). (2.16)Similarly, B(q, P ) = v(P ) + qigi(P ) gives
C(q, P ) = A(q, P i + gi(P )) +B(q, P ). (2.17)Another simple case is when B(q, P ) = wB′(q, P ), where w is a constant parameter thatsquares to zero, to make the �rst order of the Taylor expansion exact. For example, we can take

w = $$′, where $ and $′ are constant and anticommuting. We �nd
C(q, P ) = A(q, P ) +B

(
q +

∂A

∂P
,P

)
.6
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Similarly, if A(q, P ) = wA′(q, P ) we have

C(q, P ) = A

(
q, P +

∂B

∂q

)
+B(q, P ).One may wonder if there is a relation between the composition formula (2.7) and the Baker-Campbell-Hausdor� formula. It turns out that the formula (2.7) is a sort of �primitive� of theBCH formula. The next section better clari�es this concept.3 The componential mapThe composition law of the previous section is good for a number of purposes, but not practical inother cases. For example, it does not provide a simple way to invert a canonical transformation.In this section, we propose a standard way of expressing the generating function of a canonicaltransformation by means of a �componential� map and rephrase the composition law in a waythat makes various properties more apparent. The componential map is written as a perturbativeexpansion around the identity map and obeys the BCH formula. Among other things, it makesthe inverse operation straightforward.Let A denote the space of C∞ functions X,Y, . . . on phase space. Let {X,Y } denote thePoisson brackets of X and Y , and ad(X) : A → A, Y 7→ ad(X)Y = {X,Y } denote the adjointmap. Write the BCH formula as

ead(X)ead(Y ) = ead(X+Y+X4Y ), (3.1)where
X4Y ≡

1

2
{X,Y }+

1

12
({X, {X,Y }}+ {Y, {Y,X}}) + · · ·The composition law (2.2) of the previous section de�nes a map

◦ : A×A→ A, F12, F23 7−→ F13 = F23 ◦ F12.The componential map is a map C : A→ A, X 7−→ C(X), such that C(0) = I and
C(X) ◦ C(Y ) = C(X + Y +X4Y ). (3.2)We call it componential map, because it is determined by the composition law, as we prove below.Note that (3.2) implies that the inverse of C(X) is just C(−X).Basically, we regard (3.2) as an equation for the unknown C. To better appreciate what weare doing, consider
E(M)E(N) = E(M +N +M ×N)as an equation for the unknown map E, where M and N are square matrices of some order, theleft-hand side is the matrix product of E(M) and E(N) and M ×N is the same as M4N with7
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Poisson brackets replaced by commutators. We know that the solution of this problem is theexponential of the matrix, i.e. E(M) = eM . The exponential map ead(X) can also be seen as thesolution E(X) of the equation

E(X)E(Y ) = E(X + Y +X4Y ), (3.3)where E(X) and E(Y ) are operators A → A, and the left-hand side is their product. Similarly,the componential map is the solution of (3.3) if E(X) and E(Y ) are viewed as the generatingfunctions of some canonical transformations and the right-hand side is the generating function oftheir composition.We expand C(X) as
C(X) = I + c(X) = I +

∞∑

n=1

cn(X), (3.4)where I denotes the identity map, c1 = X and cn(X), n > 2, are homogeneous functions ofdegree n in X and its derivatives. When we need to make the arguments of the various functionsexplicit, we denote them by q, P . Then I(q, P ) = qiP i is the generating function of the identitycanonical transformation, while the functions X, C(X), c(X), cn(X) are written as X(q, P ),
C(X(q, P )), c(X(q, P )) and cn(X(q, P )), respectively. Note that the Poisson brackets involved inthe 4 operation of formula (3.2) are calculated with respect to the �mixed� variables q, P .Now we prove that the functions cn(X(q, P )), n > 1, are recursively determined by the formula

cn(X(q, P )) =
1

n!

dn−1

dξn−1
X

(
qi, P j +

n−1∑

k=1

ξk
∂

∂qj
ck(X(q, P ))

)∣∣∣∣∣
ξ=0

. (3.5)To achieve this goal, we apply the composition law (3.2) in the particular case where X and Yare proportional to each other, so that X4Y = 0. If σ and τ are arbitrary constants, we have
C(σX) ◦ C(τX) = C((σ + τ)X). From formulas (2.9) and (3.4), we get

∞∑

n=1

(σ + τ)ncn(X(q, P )) =

∞∑

n=1

[τncn(X(q, P + φ)) + σncn(X(q + ψ,P ))] − ψiφi,upon extremization with respect to φ and ψ. We di�erentiate this equation with respect to τ andthen set τ = 0. Because of the extremization, we can keep φ and ψ constant. The result is
∞∑

n=1

nσn−1cn(X(q, P )) = X

(
q, P i +

∞∑

n=1

σn
∂

∂qi
cn(X(q, P ))

)
, (3.6)having noted that

φi =

∞∑

n=1

σn
∂

∂qi
cn(X(q, P )), ψi = 0,at τ = 0. Di�erentiating formula (3.6) n − 1 times with respect to σ and setting σ = 0 later on,we get (3.5). 8
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The �rst orders are

C(X) = I +X +
1

2
XiX

i +
1

3!

(
XijX

iXj +XjXi
jXi +XijXiXj

) (3.7)
+

1

4!

(
XiX

i
jX

j
kX

k + 3XiX
i
jX

jkXk + 3XiXijX
j
kX

k + 5XiXijX
jkXk

)

+
1

4!

(
XijkX

iXjXk +XiX
i
jkX

jXk +XiXjX
ij
k X

k +XiXjXkX
ijk
)
+ · · · ,where

Xi1···in
ji···jm

≡
∂n+mX(q, P )

∂qi1 · · · ∂qin∂P j1 · · · ∂P jm
.4 Relation with the solution of the Hamilton-Jacobi equationAs promised, the componential map is uniquely determined by the composition law. However, westill have to prove that formula (3.2) holds for arbitrary X and Y . This goal can be achieved byworking out the relation between the componential map and the solution of the Hamilton-Jacobiequation.Rescale X by a factor η. Recalling that the function cn is homogeneous of degree n, formulas(3.4) and (3.5) give

C(ηX(q, P )) = qiP i +

∞∑

n=1

ηncn(X(q, P )) = qiP i +

∞∑

n=1

ηn

n!

dn−1

dξn−1
X

(
qi,

∂

∂qj
C(ξX(q, P ))

)∣∣∣∣
ξ=0

.This is just the solution of the Hamilton-Jacobi equation
∂

∂η
C(ηX(q, P )) = X

(
qi,

∂

∂qj
C(ηX(q, P ))

) (4.1)with the initial condition C(0) = I. To map formula (4.1) into the usual form of the Hamilton-Jacobi equation, it is su�cient to imagine that η is minus the time t, the function X(q, p) is a(time-independent) Hamiltonian H(q, p) and the componential map C is the action S:
∂S

∂t
+H

(
q,
∂S

∂q

)
= 0.Conversely, given a mechanical system described by the time-independent HamiltonianH(q, p),the function

C(−tH(q, P )) = qiP i +

∞∑

n=1

(−t)ncn(H(q, P )) (4.2)is the generating function of the canonical transformation that performs the time evolution fromtime t to time zero.The corresponding Hamilton equations
dpi

dt
= −{H(q, p), pi} = −ad(H(q, p))pi,

dqi

dt
= −{H(q, p), qi} = −ad(H(q, p))qi, (4.3)9
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are solved by the exponential map

Qi = etad(H(q,p))qi, P i = etad(H(q,p))pi. (4.4)Indeed, the solution (4.2) of the Hamilton-Jacobi equation is the generating function of the canon-ical transformation that maps qi(t), pi(t) to the initial conditions Qi, P i, because it makes thetransformed Hamiltonian vanish. Clearly, (4.3) and (4.4) imply dQi/dt = dP i/dt = 0. For futurereference, we recall that the Hamilton equations imply
f(Q,P ) = etad(H(q,p))f(q, p), (4.5)for an arbitrary function f ∈ A. Indeed, (4.5) solves df(Q,P )/dt = 0 and is obviously correct at

t = 0.Thus, the transformations generated by C(X(q, P )) are
(

Qi

P i

)
= e−ad(X(q,p))

(
qi

pi

)
. (4.6)Since the exponential map satis�es the BCH formula (3.1), we can easily prove that the compo-nential map satis�es the BCH formula (3.2), for arbitrary functions X and Y .To see this, let us write the transformations generated by C(Y (q1, p2)) and C(X(q2, p3)):

(
qi3
pi3

)
= e−ad(X(q2,p2))

(
qi2
pi2

)
,

(
qi2
pi2

)
= e−ad(Y (q1,p1))

(
qi1
pi1

)
. (4.7)Because of (2.2), the transformations due to (C(X) ◦ C(Y ))(q1, p3) are then

(
qi3
pi3

)
= e−ad(X(q2,p2))e−ad(Y (q1,p1))

(
qi1
pi1

)
. (4.8)Note that the functions X and Y have di�erent arguments in this formula. To �nalize thecomposition, we must convert q2, p2 into q1, p1 inside X(q2, p2). Obviously, the variables usedto calculate the Poisson brackets do not need to be speci�ed, because the transformations arecanonical. In particular, we do not need to specify the variables in the brackets of the adjointmaps. However, the arguments of X and Y are crucial, which is why we have written themexplicitly starting from formula (4.6).We have

X(q2, p2) = e−ad(Y (q1,p1))X(q1, p1), e−ad(X(q2,p2)) = e−ad(Y (q1,p1))e−ad(X(q1,p1))ead(Y (q1,p1)).The �rst relation is a particular case of (4.5), while the second relation follows from the �rst oneand
e−ad(Y ){f, g} = {e−ad(Y )f, e−ad(Y )g},10
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which is another consequence of (4.5). Then the transformations (4.8) become

(
qi3
pi3

)
= e−ad(Y (q1,p1))e−ad(X(q1,p1))

(
qi1
pi1

)
.Since an equivalent version of (3.1) is e−ad(Y )e−ad(X) = e−ad(X+Y+X4Y ), the BCH formula (3.2)follows by comparison with (4.6) again.Setting C(Y ) = FA, C(X) = FB and FC = C(X) ◦ C(Y ), we can easily check the �rst feworders of (3.2) by comparing the formulas (2.15) and (3.7).Summarizing, the componential map is a sort of generating function for the exponential map.Indeed, the transformations of the coordinates and the momenta are given by the exponentialmap and generated by the componential map.5 Diagrammatics of the componential mapWe write the diagrammatic expansion of the componential map in the form

C(X) = I +X +
∞∑

n=2

∑

Gnj∈Dn

enjGnj(X), (5.1)where enj are certain coe�cients, worked out below, and Dn denotes the set of connected treediagrams Gnj(X) built with n vertices X and the propagator (2.6). Di�erently from the diagramsof the previous section, the propagator must carry an arrow, to distinguish where the q and the
P derivatives act. For de�niteness, we assume that the q derivative acts on the X toward whichthe arrow points and the P derivative acts on the X placed at the other endpoint of the line.For example, the diagrams of formula (3.7) are

3

3

5

(5.2)where we have included the coe�cients enjn! di�erent from one. Each empty disk denotes an X.We work out the rules to calculate the coe�cients enj . It is evident that some of them aresimple, others are less straightforward, such as the factor 5 appearing in the second line of formula11
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(3.7). It is convenient to refer to formula (3.5), which gives for n > 1,

cn(X(q, P )) =
1

n

n−1∑

m=1

∑

{jk}, jk>1
j1+···+jm=n−1

σ{jk}Xi1···im(q, P )
m∏

k=1

∂cjk(X(q, P ))

∂qik
, (5.3)where the symmetry factor σ{jk} is equal to one divided by the product of ∏

m
vm!, vm being thenumber of times the integer m appears in the list {jk}. We recall that c1(X(q, P )) = X(q, P ).The diagrammatic version of formula (5.3) is straightforward, because the coe�cients are justthe symmetry factors of the diagrams. Denote the function cj by means of a disk numbered by

j. Now the arrows can only exit X and enter cj . For example, we have
5c5 :

2

1

1

1
2

1

1

1

1

1
4!

2

2

1
2

3

1

4These diagrammatics generate the diagrammatics of (5.1) by iteration and allow us to �nd therules to compute the coe�cients enj . To formulate these rules, it is useful to de�ne a suitablecutting procedure.Given a diagram Gnj(X), detect the disks to which only exiting lines are attached. Considerone of such disks at a time. Mark the disk with a symbol × at its center and cut the lines attachedto the disk in two. This operation gives a disconnected diagram. For example,
The so-obtained cut diagrams are made of two types of subdiagrams. One is the subdiagrammade of the marked disk and its lines. The rest is a set of various subdiagrams G′

mi(X), each ofwhich is equal to a diagram of type Gmi(X), m < n, with one extra incoming line.To avoid overcounting, coinciding cut diagrams must be counted only once. For example, thecutting
12
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can be performed in two equivalent ways, by detaching the left disk or the right one. However,the results are the same, so we must count only one of them.Denote the inequivalent cut diagrams by Gcut

njk(X), where k is an extra label. Then thecoe�cient enj of Gnj is given by the formula
enj =

1

n

∑

k

enjk, (5.4)where enjk are coe�cients of the cut diagrams Gcut
njk. To determine enjk,(i) divide by the number of permutations of the identical subdiagrams G′

mi, m < n;(ii) multiply by the number of ways to obtain each subdiagram G′
mi, m < n, by attaching theextra incoming line to Gmi;(iii) multiply by the coe�cients emi of the subdiagrams Gmi, m < n.We illustrate these rules by means of a few examples. First, we see how to derive the coe�cient

5 of formula (5.2), which corresponds to e4j = 5/24. The diagram G4j and its cuts are
5
24

2
1
6

1
2so we �nd

e4j =
1

4

(
2
1

6
+

1

2

)
=

5

24
.The reason why the �rst cut diagram G′

3i has a factor 2, besides e3i = 1/6, is that there are twoways of obtaining G′
3i by attaching the extra incoming line to G3i. This is the meaning of rule(ii).Next, consider the case

1
6

1
2The factor 1/2 in front of the cut diagram is due to the permutations of identical subdiagrams

G′
1i. Thus, we have e3i = 1/3(1/2) = 1/6. This is the meaning of rule (i).Formula (5.4) and the rules just listed are straightforward consequences of (5.3). We havedecomposed the diagram Gnj into its contributions as they appear on the right-hand side of (5.3),which are the cut diagrams Gcut

njk. Each of them has a simple combinatorial factor enjk. The sumof those combinatorial factors, divided by n, gives enj .13



15A3Renorm
An alternative, actually simpler, way to work out the diagrammatic expansion of the com-ponential map is given in the next section. It follows from the expansion of the time-orderedcomponential map, which has straightforward coe�cients. The coe�cients of C(X) are the val-ues of simple integrals that appear when the time-ordered formula is specialized to the case of atime-independent function X.Finally, let us mention that we can de�ne the componential logarithm of a canonical transfor-mation, brie�y called c-logarithm, by means of the inverse componential map. Writing C = I + cwe can invert (3.7) recursively. The �rst orders of the c-logarithm are
X = c−

1

2
cic

i +
1

12

(
cijc

icj + 4cjcijci + cijcicj
)

−
1

12

(
3cic

i
jc
j
kc
k + cic

i
jc
jkck + cicijc

j
kc
k + cicijc

jkck + cic
i
jkc

jck + cicjc
ij
k c

k
)
+ · · ·6 Time-ordered componential mapA canonical transformation continuously connected to the identity can be viewed as a �ctitious�time� evolution associated with a suitable �Hamiltonian�. This allows us to relate the componen-tial map to the solution of the Hamilton-Jacobi equation. In Sect. 4 we have taken advantage ofthis correspondence in the case of time-independent Hamiltonians, or, equivalently, η-independentfunctionsX(q, P ). Generalizing the formulas of Sect. 4 to time-dependent Hamiltonians H(q, p, t),we can obtain the time-ordered (precisely, η-ordered) componential map.Start from a function X(q, P, η) and consider the Hamilton-Jacobi equation

∂

∂η
C(q, P, η) = X

(
qi,

∂

∂qj
C(q, P, η), η

)
. (6.1)Writing C(q, P, η) = qiP i + c(q, P, η), we �nd

c(q, P, η) =

∫ η

0
dη′X

(
qi, P j +

∂

∂qj
c(q, P, η′), η′

)

=

∫ η

0
dη′X(q, P, η′) +

∞∑

n=1

1

n!

∫ η

0
dη′Xi1···in(q, P, η

′)
n∏

k=1

∂c(q, P, η′)

∂qik
,which can be solved recursively with the help of the following diagrammatics.Instead of considering the diagrams Gnj of the previous section, consider their η-orderedversions G̃nj , determined by applying the following rules. Given a diagram Gnj , assign coordinates

ηk to each disk. We say that� the disk with coordinate ηk is anterior (posterior) to the disk with coordinate ηk′ if ηk < ηk′(ηk > ηk′);� a pair of disks is η-ordered if one of them is anterior to the other;14
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� two disks D1 and D2 are separated if the path connecting them (drawn by covering eachline only once) contains a third disk D3 that is posterior to both;� the latest disk is the one with coordinate ηk such that ηk > ηk′ for every k′ 6= k;� given a disk D, the disk D′ following D is the most anterior disk among the disks that areposterior to D and not separated from D.Assume that the η coordinate is the horizontal one and it is oriented from the right to the left.Displace the disks of Gnj so that all the nonseparated pairs of disks become η-ordered and eacharrow points from the posterior disk to the anterior one. Two diagrams are said to be equivalentif every pair of nonseparated disks has the same η ordering.Then, construct all the inequivalent diagrams. Call them G̃nj , where n is the number of disksand j is an extra label. Denote the set of diagrams with n disks by D̃n.For example, the η-ordered versions of the diagrams of formula (5.2) are

(6.2)Given a diagram G̃nj , associate a cut diagram G̃cut
nj with it by marking the latest disk with ×and detaching it from the rest as explained before. The operation generates subdiagrams G̃′

mj ,each of which is built by adding an extra incoming line to a diagram of type G̃mj , with m < n.The symmetry factor of G̃nj is equal to the product of the symmetry factors of the subdiagrams
G̃′
mj , divided by the number of permutations of the equivalent G̃′

mjs. The symmetry factor of asubdiagram G̃′
mj is equal to the number of ways to obtain it by adding the extra line to G̃mj ,times the symmetry factor of G̃mj .Finally, evaluate the diagram G̃nj as follows. A disk with coordinate ηk corresponds to

X(q, P, ηk). As before, an oriented line is the propagator (2.6), the q derivative acting on theanterior disk and the P derivative acting on the posterior disk. Multiply by the symmetry factorof the diagram and integrate the coordinate ηk of each disk from 0 to the coordinate ηk′ of thefollowing disk. Finally integrate the coordinate of the latest disk from 0 to η. This gives a function15
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G̃nj(q, P, η). The sum of these functions plus the identity map gives the η-ordered componentialmap, which reads

C(q, P, η) = qiP i +

∫ η

0
dη′X(q, P, η′) +

∞∑

n=2

∑

G̃nj∈D̃n

G̃nj(q, P, η). (6.3)To order three we have
C(q, P, η) = qiP i +

∫ η

0
dη′X(q, P, η′) +

∫ η

0
dη′Xi(q, P, η

′)

∫ η′

0
dη′′Xi(q, P, η′′)

+

∫ η

0
dη′Xi(q, P, η

′)

∫ η′

0
dη′′Xi

j(q, P, η
′′)

∫ η′′

0
dη′′′Xj(q, P, η′′′)

+

∫ η

0
dη′Xi(q, P, η

′)

∫ η′

0
dη′′Xj(q, P, η

′′)

∫ η′′

0
dη′′′Xij(q, P, η′′′) (6.4)

+
1

2

∫ η

0
dη′Xij(q, P, η

′)

∫ η′

0
dη′′Xi(q, P, η′′)

∫ η′

0
dη′′′Xj(q, P, η′′′) + · · ·As anticipated before, an alternative way to compute the coe�cients enj and enjk of formulas(5.1) and (5.4) is to use formula (6.3), assume that X is η independent, integrate the variouscoordinates ηk and �nally set η = 1. Diagrams that are identical for the purposes of the previoussection have di�erent η orderings, which is why the coe�cients of the η-ordered componentialmap are much simpler than enj and enjk.When we have a one-parameter family of generating functions C(q, P, η) such that C(q, P, 0) =

I(q, P ), we can give a more practical de�nition of logarithm. Viewing �ctitiously the η dependenceas a time evolution, we de�ne the h-logarithm (h standing for �Hamiltonian�) as the Hamiltonian
X(q, p, η) associated with it. By the Hamilton-Jacobi equation (6.1), we have

X(q, p, η) =
∂̃C

∂η
, (6.5)where the tilde means that the argument P must be solved in terms of q, p, η by means of thecanonical transformation C itself. For future use we remark that, in particular, if f(q, p, η) is afunction that behaves as a scalar under C, i.e. such that f ′(Q,P, η) = f(q, p, η), we have

∂f ′

∂η
=
∂f

∂η
−

{
f,
∂̃C

∂η

}
. (6.6)If there is no parameter η to apply (6.5), the h-logarithm is not de�ned. If C(q, P, η, ζ, . . .)depends on more parameters η, ζ, . . . and C(q, P, 0, 0, . . .) coincides with the identity map, we haveone h-logarithm for each parameter. In the time-independent case C(ηX(q, P )), the h-logarithm

X(q, p, η) coincides with X(q, p). Note that the c-logarithm always exists and is unique.16
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7 Canonical transformations and Batalin-Vilkovisky formalismIn this section we generalize the results found so far to the Batalin-Vilkovisky formalism, where thegenerating function(al)s are fermionic and the �elds may be both bosonic and fermionic. Then wegive some examples that have applications to both renormalizable and nonrenormalizable theories.We compose the canonical transformations that perform the gauge �xing with those that switchto the background �eld method. Then we use the componential map to interpolate between thebackground �eld approach and the standard nonbackground approach.The Batalin-Vilkovisky formalism is convenient to study general gauge theories. The con-jugate variables are the �elds Φα and certain external sources Kα coupled to the Φ symmetrytransformations. A notion of antiparentheses

(X,Y ) ≡

∫ (
δrX

δΦα
δlY

δKα
−
δrX

δKα

δlY

δΦα

) (7.1)is introduced, where X and Y are functionals of Φ and K, the integral is over spacetime pointsassociated with repeated indices and the subscripts l and r in δl and δr denote the left and rightfunctional derivatives, respectively. The �elds Φα and the sourcesKα have statistics εα and εα+1,respectively, which are equal to 0 mod 2 for bosons and 1 mod 2 for fermions.The �elds Φα include the classical �elds φi, the Fadeev-Popov ghosts CI , the antighosts C̄Iand the Lagrange multipliers BI for the gauge �xing. The action S(Φ,K) is a local functionalthat satis�es the master equation (S, S) = 0 and coincides with the classical action Sc(φ) at
C = C̄ = B = K = 0.The canonical transformations are the transformations Φ,K → Φ′,K ′ that preserve the an-tiparentheses (7.1). They can be derived from a generating functional F (Φ,K ′) of fermionicstatistics, by means of the formulas

Φα′ =
δF

δK ′
α

, Kα =
δF

δΦα
.The identity transformation is generated by F (Φ,K ′) =

∫
ΦαK ′

α.The formulas derived in the previous sections for the componential map and the compositionof canonical transformations can be immediately generalized to fermionic functionals of �elds andsources of various statistics. Indeed, the basic operator, that is to say the propagator (2.6), isturned into ∫ ←−
δr

δΦα(x)

−→
δl

δK ′
α(x)

, (7.2)which has fermionic statistics. The functionals F (Φ,K ′), C(X) and X also have fermionic statis-tics. Thus, each time we add a propagator and a new diskX, the statistics are correctly preserved.As a consequence, the formulas found so far can be straightforwardly applied to the BV formalism.Canonical transformations are used for various purposes in quantum �eld theory. They encodethe most general (changes of) gauge �xing and changes of �eld variables. Moreover, they are an17
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important ingredient of the perturbative subtraction of divergences. Precisely, they subtract thedivergences that are proportional to the �eld equations. The composition and the inversion ofcanonical transformations are operations that are met frequently. Often, it is enough to studythem at the in�nitesimal level, but sometimes it is necessary to handle them exactly or to allorders of the expansion. The literature on these topics is wide, both at the mathematical/formallevel [1, 9] and at the level of renormalization and gauge dependence [10, 11, 12, 13, 14].We recall that the BV formalism is quite versatile and can be used to formulate all kinds ofgeneral gauge theories, including those where the symmetry transformations close only on shelland those that have reducible gauge algebras (where the ghosts have local gauge symmetries oftheir own and it is necessary to introduce �ghosts of ghosts�). Our formulas hold in those casesalso.Nevertheless, we concentrate the applications of this section to the irreducible gauge symme-tries that close o� shell, which have the most important applications to physics. In those cases,there exists a solution S(Φ,K) of the master equation that is linear in K:

S(Φ,K) = Sc(φ)−

∫
Rα(Φ)Kα. (7.3)The functions Rα(Φ) are the symmetry transformations of the �elds Φα. See for example theappendix of ref. [14] for explicit formulas in the case of general covariance, local Lorentz symmetry,Abelian gauge symmetries and non-Abelian Yang-Mills symmetries.We give some examples of applications in the context of the background �eld method [15].Two di�erent approaches to formulate the background �eld method in the context of the BVformalism can be found in the literature, the one of refs. [12, 16] by Binosi and Quadri2 and theone of the present author [18]. The two have properties that are good for di�erent purposes. Herewe follow the approach of [18]. One starts from the action

S(Φ,K,Φ,K) = Sc(φ)−

∫
Rα(Φ)Kα −

∫
Rα(Φ)Kα, (7.4)which is obtained from (7.3) by adding a background copy with vanishing classical action. It isnot necessary to have background copies of the antighosts and the Lagrange multipliers, so wetake Φα = {φi, CI} and Kα = {Ki

φ,K
I
C}, where φi and CI are background copies of the physical�elds and the ghosts, respectively, and Ki

φ, KI
C are the sources associated with them.Then we perform the background shift, by means of the canonical transformation generatedby3

Fb(Φ,Φ,K ′,K ′) =

∫
(Φα −Φα)K ′

α +

∫
ΦαK ′

α.2See also [17] for a similar approach in the language of WTST identities and the Zinn-Justin equation.3Di�erently from ref. [18], we understand that the �elds and the sources with primes are the transformed ones.This originates some sign di�erences with respect to the formulas of [18].18
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Taking advantage of the componential map, we can write

Fb = C

(
−

∫
ΦαK ′

α

)
.Indeed, the argument of C does not depend on any pair of conjugate variables, so all the nontrivialdiagrams of formula (5.1) vanish.After the shift, the action is FbS. The new �elds Φα are called quantum �elds. The sym-metry transformations Ri(Φ) of φi are turned into the transformations Ri(Φ + Φ) of φi + φi.These can be decomposed as the sum of the background transformations Ri(Φ) of φi plus thetransformations Ri(Φ+Φ)−Ri(Φ) of φi. In turn, the transformations of φi split into the sum ofthe quantum transformations of φi [made of the C-independent part of Ri(Φ +Φ)−Ri(Φ)], plusthe background transformations of φi (the C-dependent part). Something similar happens to thesymmetry transformations of the ghosts C.The background transformations of the antighosts and the Lagrange multipliers remain trivialafter Fb, and need to be adjusted by means of a further canonical transformation, generated by

Fnm(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α −

∫
R
I
C̄
(C̄, C)KI ′

B = C

(
−

∫
R
I
C̄
(C̄, C)KI ′

B

)
,where RI

C̄
(C̄, C) denotes the background transformation of the antighosts. Explicitly, the argu-ment of the componential map C is

∫
(gfabcCbC̄c +Cρ∂ρC̄

a)Ka′
B +

∫
(2C âĉη

ĉd̂
C̄ d̂b̂ + Cρ∂ρC̄

âb̂)K ′
âb̂B

+

∫ (
Cρ∂ρC̄µ − C̄ρ∂µC

ρ
)
Kµ′
B ,(7.5)for Yang-Mills symmetries, local Lorentz symmetry and di�eomorphisms, where the hats on

a, b, . . . are used to distinguish the local Lorentz indices from the Yang-Mills ones.Finally, the theory can be gauge �xed in a background invariant way by means of the canonicaltransformation generated by
Fgf(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α −Ψ(Φ, φ) = C(−Ψ), (7.6)where Ψ(Φ, φ) is a background invariant functional of fermionic statistics, known as gauge fermion.Typically, we choose it of the form
Ψ(Φ, φ) =

∫
C̄I
(
GIi(φ, ∂)φi + ζIJ(φ, ∂)B

J
)
,where GIi(φ, ∂)φi are the gauge-�xing functions. It is common to choose such functions to belinear in the quantum �elds φi, to simplify various properties of renormalization. The operatormatrix ζIJ(φ, ∂) is symmetric, nonsingular at φ = 0 and proportional to the identity in everysimple subgroup of the gauge symmetry group. The relation Fgf = C(−Ψ) of (7.6) follows fromthe fact that the gauge fermion does not depend on the sources K.19
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Invariance under background transformations is easy to achieve, by combining the plain deriva-tive ∂ with the background �eld φ to build the background covariant derivative. For example, wecan take

Ψ=

∫ √
|g|C̄a

(
gµνDµ(A, g)A

a
ν + ζ1B

a
)
,

Ψ=

∫ √
|g|C̄

âb̂

(
eρâgµνDµ(e)Dν(e)f

b̂
ρ +

ζ2
2
Bâb̂ +

ζ3
2
gµνDµ(e)Dν(e)B

âb̂

)
,

Ψ=

∫ √
|g|C̄µ

[
gµνgρσ

(
Dρ(g)hσν + ζ4Dν(g)hρσ

)
+
ζ5
2
gµνBν

]
,in the case of Yang-Mills symmetry (with a simple group, for simplicity), local Lorentz symmetryand di�eomorphisms, respectively, where ζi are constants, Aaµ, eâµ and gµν are the backgroundgauge �eld, vielbein and metric, Aaµ, f âµ and hµν are the respective quantum �uctuations and

D(A, g), D(g), D(e) denote the covariant derivatives in the background �elds.The three canonical transformations Fb, Fnm and Fgf can be composed as follows. The �rst twocommute and have a vanishing propagator, because the �elds (sources) that appear nontriviallyin Fnm have no source (�eld) counterpart in the nontrivial sector of Fb. Thus, the compositiongives the generating functional
(Fb ◦ Fnm)(Φ,Φ,K ′,K ′) =

∫
(Φα − Φα)K ′

α +

∫
ΦαK ′

α −

∫
R
I
C̄
(C̄, C)KI ′

B ,and Fb ◦ Fnm = Fnm ◦ Fb.Now we compose Fnm with Fgf. We can consider either Fnm ◦ Fgf or Fgf ◦ Fnm. Applyingformula (2.13), we see that in the �rst case there is no nontrivial diagram, since the nontrivialpart of Fgf does not contain sources. Then formula (2.15) reduces to C = A+B and we obtain
(Fnm ◦ Fgf)(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α −

∫
R
I
C̄
(C̄, C)KI ′

B −Ψ(Φ, φ).Instead, when we consider Fgf◦Fnm, we have one nontrivial diagram and formula (2.15) e�ectivelyreduces to C = A + B + AiB
i. Note that the only nontrivial propagator is (

←−
δ /δK ′

B)(
−→
δ /δB).The composed transformation is

(Fgf ◦ Fnm)(Φ,Φ,K ′,K ′) = (Fnm ◦ Fgf)(Φ,Φ,K ′,K ′) +

∫
C̄IζIJ(φ, ∂)R

J
C̄
(C̄, C). (7.7)This result can also be found by applying the BCH formula (3.2) for the composition of thecomponential maps, with the Poisson brackets replaced by the antiparentheses (7.1). We �nd

(Fgf ◦ Fnm)(Φ,Φ,K ′,K ′) = C

(
−Ψ(Φ, φ)−

∫
R
I
C̄
(C̄, C)KI ′

B +
1

2

∫
C̄IζIJ(φ, ∂)R

J
C̄
(C̄, C)

)
.It is easy to check that only the �rst two diagrams of (5.2) contribute, so formula (3.7) reducesto C(X) = I +X + (1/2)XiX

i, which gives (7.7).20
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In ref. [18] the tensor operator ζIJ was set to zero, to make Fgf and Fnm commute. However,in some applications, such as the chiral dimensional regularization of ref. [19], which is useful totreat nonrenormalizable general chiral gauge theories, it is necessary to keep ζIJ nonvanishing, tohave well-behaved regularized propagators.The gauge �xing is the last step of the construction of the action. Indeed, only after properlyorganizing the background transformations, it makes sense to talk about a background invariantgauge fermion. Thus, we must take Fgf ◦ Fnm, rather than Fnm ◦ Fgf.The composition Fgf ◦Fnm ◦Fb can be easily worked out by means of formula (2.16) and gives

Fgf ◦ Fnm ◦ Fb = ∫ (Φα − Φα)K ′
α +

∫
ΦαK ′

α −

∫
R
I
C̄
(C̄, C)KI ′

B

−Ψ(Φ− Φ, φ) +

∫
C̄IζIJ(φ, ∂)R

J
C̄
(C̄, C).Applying the composed transformation to the action (7.4), we obtain the background �eld gauge-�xed action

Sb = (Fgf ◦ Fnm ◦ Fb)S.For various applications, it is useful to compare the results of the background �eld methodwith those of the standard, nonbackground approach. The nonbackground gauge �xed action is
S̄nb = F ′gfS, where

F ′gf(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α −Ψ′(Φ) = C(−Ψ′(Φ))is the generating functional of the canonical transformation that performs the gauge �xing. Thebackground �elds and sources are inert here. As usual, to simplify the renormalization, it isconvenient to take a quadratic gauge fermion Ψ′. We choose
Ψ′(Φ) =

∫
C̄I
(
GIi(0, ∂)φi + ζIJ(0, ∂)B

J
)
.For convenience, we further make an irrelevant background shift by applying Fb, that is tosay rede�ne the nonbackground action as Snb = (Fb ◦ F ′gf)S. Then the relation between thebackground and nonbackground actions reads

Sb = (Fgf ◦ Fnm ◦ Fb ◦ F ′−1gf ◦ F−1b )Snb.Formulas (2.16) and (2.17) give
Fb ◦ F ′−1gf ◦ F−1b =

∫
ΦαK ′

α +

∫
ΦαK ′

α +Ψ′(Φ + Φ).Using (7.7) and (2.16) again, we easily �nd
Fgf ◦ Fnm ◦ Fb ◦ F ′−1gf ◦ F−1b =

∫
ΦαK ′

α +

∫
ΦαK ′

α −∆Ψ(Φ,Φ)−

∫
R
I
C̄
(C̄, C)KI ′

B

+

∫
C̄IζIJ(φ, ∂)R

J
C̄
(C̄, C),21
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where

∆Ψ(Φ,Φ) =

∫
C̄I
(
GIi(φ, ∂)φi −GIi(0, ∂)(φi + φi) + (ζIJ(φ, ∂)− ζIJ(0, ∂))B

J
) (7.8)is the di�erence between the background �eld gauge fermion and the nonbackground one.Using the componential map, we �nd

Fgf ◦ Fnm ◦ Fb ◦ F ′−1gf ◦ F−1b = C(X),where
X = −∆Ψ(Φ,Φ)−

∫
R
I
C̄
(C̄, C)KI ′

B +
1

2

∫
C̄I
(
ζIJ(φ, ∂) + ζIJ(0, ∂)

)
R
J
C̄
(C̄, C).Again, formula (3.7) reduces to C(X) = I+X+(1/2)XiX

i, because the only nontrivial propagatoris (←−δ /δK ′
B)(
−→
δ /δB) and X is linear in B, K ′

B .We can continuously interpolate between the background and nonbackground approaches byintroducing a parameter ξ that varies from 0 to 1 and considering the canonical transformationgenerated by
Fξ = C(ξX). (7.9)Explicitly, we �nd

Fξ(Φ,Φ,K
′,K ′, ξ) =

∫
ΦαK ′

α +

∫
ΦαK ′

α − ξ∆Ψ− ξ

∫
R
I
C̄
(C̄, C)KI ′

B

+
ξ

2

∫
C̄I
[
(1 + ξ)ζIJ(φ, ∂) + (1− ξ)ζIJ(0, ∂)

]
R
J
C̄
(C̄, C). (7.10)Note that the h-logarithm of (7.9) is equal to X with KI ′

B replaced by KI
B and plays the roleof the ξ-independent Hamiltonian.A di�erent interpolation amounts to taking, for example,

F ′
ξ =

∫
ΦαK ′

α+

∫
ΦαK ′

α− ξ∆Ψ(Φ,Φ)− ξ

∫
R
I
C̄
(C̄, C)KI ′

B + ξ

∫
C̄IζIJ(φ, ∂)R

J
C̄
(C̄, C). (7.11)The h-logarithm of this expression gives a ξ-dependent Hamiltonian, which we now calculate.Assume that U(Φ,K, ξ) is a function that behaves as a scalar under canonical transformations

Φ,K → Φ′,K ′, i.e. such that U ′(Φ′,K ′, ξ) = U(Φ,K, ξ). Then formula (6.6) turns into [11] (seealso the appendix of [18])
∂U ′

∂ξ
=
∂U

∂ξ
− (U, Y ), Y (Φ,K, ξ) =

∂̃F

∂ξ
, (7.12)where F(Φ,K ′, ξ) is the generating functional of the canonical transformation and the tilde meansthat, after taking the ξ derivative, the source K ′ must be expressed in terms of Φ, K and ξ.22
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Choosing F = F ′

ξ and enlarging the sets of �elds and sources to include the background ones, we�nd the h-logarithm
Y (Φ,K,Φ,K, ξ) = −∆Ψ(Φ,Φ)−

∫
R
I
C̄
(C̄, C)KI

B+

∫
C̄J
[
(1− ξ)ζJI(φ, ∂) + ξζJI(0, ∂)

]
R
I
C̄
(C̄, C).It may be more convenient to work with the interpolation (7.10), whose h-logarithm is ξ indepen-dent, rather than (7.11).The dependence of the correlation functions on the parameters introduced by a canonicaltransformation is encoded into the equations of gauge dependence [20, 10, 11, 21, 13], sometimesknown as Nielsen identities. The componential map and the other tools of this paper may beconvenient to manipulate those equations more e�ciently. In particular, the interpolation (7.9)allows us to take advantage of the background �eld method and prove key properties of renor-malization in simpler, more powerful ways. An illustration of this fact can be found in ref. [22],where an important theorem about the cohomology of renormalization was proved. That theoremallows us to classify the structures of the counterterms and the local contributions to anomalies.In turn, the classi�cation of counterterms and anomalies is important to show, to all ordersof the perturbative expansion, that the gauge symmetries are not a�ected by the subtraction ofdivergences (up to canonical transformations). The background �eld method and the interpolation(7.11) have been used [18] to achieve this goal in manifestly nonanomalous theories, renormalizableor not. In potentially anomalous nonrenormalizable theories, such as the standard model coupledto quantum gravity, which require a more involved regularization [19], the goal must be achievedtogether with the proof of the Adler-Bardeen theorem [23, 24] for the cancelation of anomalies toall orders (when they vanish at one loop). Within the standard, nonbackground approach, thiswas done for the �rst time in ref. [24]. The techniques of this paper and the results of [22] may beuseful to upgrade the derivation of [24] to the background �eld approach and prepare the groundto make further progress.8 ConclusionsCanonical transformations play an important role not only in classical mechanics, but also inquantum �eld theory. In several situations, it is useful to have practical formulas for the per-turbative expansion of the generating functions around the identity map. In this paper we havegiven a number of such formulas, starting from the composition law, which we have expressed asthe tree sector of a functional integral and later rephrased by means of the componential map.The componential map is a standard way to express the generating function of a canonicaltransformation. It makes the inverse operation straightforward and obeys the Baker-Campbell-Hausdor� formula. It also admits a simple diagrammatic interpretation and a time-ordered gen-eralization. It can be related to the solution of the Hamilton-Jacobi equation, expressed as a23
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