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Abstract

We study phenomena predicted by a renormalizable, CPT invariant extension of the Standard Model

that contains higher-dimensional operators and violates Lorentz symmetry explicitly at energies greater

than some scale ΛL. In particular, we consider the Cherenkov radiation in vacuo. In a rather general class

of dispersion relations, there exists an energy threshold above which radiation is emitted. The threshold is

enhanced in composite particles by a sort of kinematic screening mechanism. We study the energy loss and

compare the predictions of our model with known experimental bounds on Lorentz violating parameters

and observations of ultrahigh-energy cosmic rays. We argue that the scale of Lorentz violation ΛL (with

preserved CPT invariance) can be smaller than the Planck scale, actually as small as 1014-1015GeV. Our

model also predicts the Cherenkov radiation of neutral particles.
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1 Introduction

Lorentz symmetry is one of the most precise symmetries in nature [1]. Nevertheless, the possibility

that it might be violated at high energies or large distances is still open and has been widely

investigated. If we assume that Lorentz symmetry is not exact, several phenomena that are

otherwise forbidden can occur. Examples are the Cherenkov radiation in vacuo and the photon

decay into an electron-positron pair. Studying phenomena of this type and comparing predictions

with experimental data, we can look for signs of Lorentz violation and put bounds on the values

of Lorentz violating parameters.

From the theoretical point of view, it is interesting to know that if Lorentz symmetry is

(explicitly) violated at high energies, vertices that are non-renormalizable by power counting can

become renormalizable by a modified power-counting criterion, which assigns different weights

to space and time [2]. Consistent models, where the dispersion relations are modified by higher

powers of momenta, can contain operators of higher dimensions, such as two-scalar–two-fermion

vertices and four-fermion vertices; they are multiplied by inverse powers of some energy ΛL, which

can be interpreted as the scale of Lorentz violation. Lorentz violating gauge theories [3, 4] can

be formulated, as well as Lorentz violating extensions of the Standard Model [5, 6], which we

call, for brevity, LVSM. In the common perturbative framework, these theories are unitary, local,

polynomial and causal.

Various phenomena that are forbidden in Lorentz invariant theories, but allowed in Lorentz

violating ones, have been studied in the literature, mainly using the modified dispersion relations

of low-energy effective models. Here we plan to study some of those phenomena in the realm of the

LVSM, where the dispersion relations are crucial for renormalizability, therefore more constrained

and valid, in principle, at arbitrarily high energies (when gravity is switched off). Our purpose is

to derive bounds on the magnitude of ΛL. We believe that the scale of Lorentz violation may be

smaller than the Planck scale. If this were true, our understanding of physics around the Planck

scale, in particular quantum gravity, would have to be reconsidered from scratch.

We assume that CPT is preserved (or that it is violated at energies much larger than ΛL). The

value of ΛL originally suggested in ref. [5] from considerations about neutrino masses and bounds

on proton decay was ΛL ∼ 1014-1015GeV. (In the appendix we briefly review those arguments

and the minimal LVSM.) In this paper we show that such values are indeed compatible with

experimental data on Lorentz violating phenomena.

Experimental bounds on the parameters that multiply higher-dimensional operators can be

read from the tables of Kostelecky and Russell [1]. At present, the best results belong to the

photon sector, and concern the quadratic terms

Fkλ∂α1
· · · ∂αn

Fµν .
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In particular, from astrophysical birefringence and astrophysical dispersion it is found that the

coefficients of the terms of dimensions 6 and 8 are bounded by

. 10−29GeV−2 and . 10−25GeV−4,

respectively. Interpreting such coefficients as ∼ 1/Λ2
L and ∼ 1/Λ4

L we see that these experimental

data are consistent with our claim that ΛL could be as small as 1014-1015GeV.

Under some assumptions, ultrahigh-energy cosmic rays have been claimed to raise the bound

on ΛL well above the Planck scale [7]. However, the nature of ultrahigh-energy cosmic rays has

not been firmly established, yet, so it is not obvious how to use them to put unambiguous bounds

on the scale of Lorentz violation. In this paper we give several scenarios that are consistent with

a value of ΛL well below the Planck scale, assuming that ultrahigh-energy cosmic rays are protons

or heavy nuclei. For our purposes, it will be sufficient to restrict to the minimal QED subsector

of the LVSM, which we call LVQED.

We focus on the Cherenkov radiation in vacuo. For a very general class of dispersion relations

we prove that there exists an energy threshold above which radiation is emitted and below which

it is not emitted. Quite interestingly, the threshold is enhanced in composite particles by a sort of

kinematic screening mechanism. We study the energy loss as a function of time and prove that in

all cases of our interest it is so rapid that the radiation is practically governed by pure kinematics.

Our models also predict the Cherenkov radiation of neutral particles.

The paper is organized as follows. In section 2 we present the LVQED model we are going

to study and some basic formulas. In section 3 we study the Cherenkov radiation in the low-

energy expansion. From section 4 onwards we investigate situations where the standard low-

energy expansion does not apply. Some results can be derived using exact dispersion relations.

For other purposes a different kind of expansion can be used. In section 4 we study kinematic

constraints and derive the energy threshold for Cherenkov radiation. In section 5 we compare

two typical scenarios with experimental data. In section 6 we study composite particles and show

that compositeness favors larger thresholds. In section 7 we discuss the Cherenkov radiation of

neutrons and neutrinos, while section 8 contains our conclusions.

2 Preliminaries

In this section we write the models we are going to study and derive a general formula for the

energy loss per unit time.

The LVQED model we consider is the minimal QED subsector of the LVSM recalled in the
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appendix, to which we refer for the notation. Its Lagrangian reads

L=LF + ψ̄

(

iγ0D0 +
ib0
Λ2
L

D̄/ 3 + ib1D̄/−m−
b′

ΛL
D̄/ 2

)

ψ (2.1)

+
e

ΛL
ψ̄

(

b′′σijFij +
b′0
ΛL

γi∂jFij

)

ψ + ie
b′′0
Λ2
L

Fij

(

ψ̄γi

←→̄
D j

2
ψ

)

,

where the covariant derivative is Dµ = ∂µ + ieAµ, σµν = −i[γµ, γν ]/2. Moreover,

LF =
1

2
F 2
0i −

1

4
Fij

(

τ2 − τ1
∂̄2

Λ2
L

+ τ0
(−∂̄2)2
Λ4
L

)

Fij

is the Lagrangian of free photons. The quantization of this theory has been studied in ref. [8].

More details can be found there, together with an analysis of its renormalization. The dispersion

relations of fermions and photons are

E(p̄2) =

√

p̄2
(

b1 +
b0
Λ2
L

p̄2
)2

+

(

b′

ΛL
p̄2 +m

)2

, ω(k̄2) =

√

τ2k̄2 + τ1
(k̄2)2

Λ2
L

+ τ0
(k̄2)3

Λ4
L

, (2.2)

respectively.

The low-energy limit of (2.1) is

Llow =
1

2
F 2
0i −

τ2
4
F 2
ij + ψ̄

(

iγ0D0 + ib1D̄/−m
)

ψ, (2.3)

which formally coincides with the Lagrangian of QED in a medium. The parameters τ2 and b1

are related to the dielectric constant ε and the magnetic permeability µ by the formulas

τ2 =
ε

µ
, b1 = ε. (2.4)

Moreover,

n =
√
εµ =

b1√
τ2

is the refractive index. Performing the replacements (2.4) and the rescalings

xi → εxi, Ai →
Ai

ε
, ψ → ψ

ε3/2
,

in the action of (2.3), we obtain the more common Lagrangian

Lmedium =
ε

2
F 2
0i −

1

4µ
F 2
ij + ψ̄ (iD/−m)ψ. (2.5)

We use for (2.5) the gauge-fixing term of Lorenz type

LGF = − 1

2µ
(εµ∂0A0 − ∂iAi)

2. (2.6)
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We assume that a particle above threshold continuously loses its energy through the process

e → eγ. Then the emitted radiation is made of a large number of low-frequency photons. The

particle remains above threshold, but its energy asymptotically tends to the threshold value. This

conservative assumption is sufficient for our purposes. Indeed, we are going to show that in all

cases we are interested in the energy loss calculated in this way is so rapid that we can assume that

the particle (practically) reaches the threshold instantaneously. Other types of emission occur.

For example, the model (2.1) also contains vertices with two fermions and two or more photons,

which allow elementary processes such as e→ eγγ and e→ eγγγ. It may also happen [9] that the

particle loses most of its energy emitting a single sufficiently energetic photon, or a finite number

of photons. Then the deceleration is not continuous. These effects can increase the rate of energy

loss, but do not affect the conclusions of this paper.

It is convenient to derive a general formula for the energy loss per unit time without making

assumptions on the dispersion relations. It will be applied to both (2.1) and (2.3). Consider a

charged fermion of energy E and momentum p emitting a photon of frequency ω. Call E′ and p′

the energy and momentum of the fermion after emission. The expression of the differential width

is

dΓ =
1

2E
|M|2(2π)δ(E − ω −E′)(2π)3δ3(p− k− p′)

d3k

2ω(2π)3
d3p′

2E′(2π)3
, (2.7)

where |M|2 is the squared modulus of the transition amplitude, summed over the final states and

averaged over the initial states.

As usual, the integral over p′ is done eliminating the delta function associated with momentum

conservation. The surviving integral is reduced to an integral over ω and u = cos θ, θ being the

angle between the momentum of the incoming fermion and the momentum of the emitted photon.

Next, the delta function of energy conservation can be used to perform the u-integral. It gives

u as a function of p and k. Finally, the condition |u(p, k)| 6 1 determines the range of the final

k-integration. We find
dΓ

dω
=
|M|2
16πEp

k

ω

dk

dω

∑

u∗

1
∣

∣

∣

E′

p′
dE′

dp′

∣

∣

∣

u=u∗

, (2.8)

where the sum is over the solutions u∗(p, k) to the condition of energy conservation. In the case

of (2.5), the solution is unique. Instead, the dispersion relations of our Lorentz violating models

admit multiple solutions, in general. Yet, the solution remains unique under quite reasonable

assumptions (see section 4). In this case the k-range is of the standard form 0 6 k 6 kmax, for

some kmax.

The differential width can be used to calculate the energy loss per unit time, using the formula

dE

dt
= −

∫ ωmax

0
ω
dΓ

dω
dω, (2.9)

where ωmax = ω(k2max).
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3 Cherenkov radiation in QED

In this section we study the energy loss of charged particles in empty space due to the violation

of Lorentz symmetry, first in the low-energy theory (2.3) and later in the low energy expansion

of the complete theory (2.1). We then apply our formulas to ultrahigh-energy cosmic rays. The

Cherenkov radiation in vacuo has been studied by various authors [9, 10, 11, 12]. Some results of

this section are already available in the literature, others are new.

The Cherenkov radiation occurs if n > 1, which we assume here. (If n < 1 a sufficiently

energetic photon can decay into an electron-positron pair, see for example [10]. However, we are

not going to study that phenomenon in this paper). We use the notation (2.5) and work out

exact formulas without assuming that n is close to 1, so our results can be also applied to the

Cherenkov radiation of charged particles in true media.

The propagators derived from (2.5) and (2.6) are

〈Aµ(k)Aν(−k)〉 =
i

ε

diag
(

−1/n2,1
)

ω2 − (k2/n2) + i0
, 〈ψ(p)ψ̄(−p)〉 = i

/p+m

p2 −m2 + i0
,

where k = (ω,k). From these expressions we can read the formulas for the sums over polarization

states:

∑

λ

ε(λ)µ ε(λ)∗ν =
1

ε
diag

(

−1/n2,1
)

,
∑

s

us(p)ūs(p) = /p+m,
∑

s

vs(p)v̄s(p) = /p−m. (3.1)

After a small amount of work we find that formula (2.8) gives

dΓ

dω
=

µα

2Ep

{

n2 − 1

n2

[

2E(E − ω) + ω2

2
(n2 + 1)

]

− 2m2

}

, (3.2)

with

ω 6 ωmax =
2(np − E)

n2 − 1
,

1

n
6 v ≡ p

E
< 1.

In the limit v � 1, ω � E, formula (3.2) agrees with the classic one, see e.g. [13]. The energy

loss (2.9) per unit time is
dE

dt
= − αm2µ(nv − 1)3P (v)

3n2(n2 − 1)3v(1− v2) , (3.3)

where

P (x) = 3n(3n2 − 1)x− (5n2 + 1).

The result (3.3) agrees with the one found by Klinkhamer and Schreck in ref. [12]. We can rewrite

it as a differential equation for the velocity as a function of time:

dv

dt
= −αmµ(nv − 1)3

√
1− v2P (v)

3n2(n2 − 1)3v2
. (3.4)
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Figure 1: Radiation time

The energy decreases to the asymptotic limit

Elim =
mn√
n2 − 1

, (3.5)

which corresponds to the asymptotic velocity vlim = 1/n. Equation (3.4) can be integrated around

v = 1, but not around vlim. This means that a particle with infinite energy radiates to some final

energy Ef = m/
√

1− v2f in a finite amount of time t(n,Ef ), but reaches the energy limit (3.5)

only after an infinite amount of time: t(n,Elim) =∞.

Radiation time Solving (3.4) we find

t(n,Ef ) =
3n(n2 − 1)(3 − nvf )
16αEfµ(nvf − 1)2

+
3(25n4 + 14n2 − 3)

64αmµ
√
n2 − 1

ln
n− vf +

√

(n2 − 1)(1 − v2f )
nvf − 1

− 9(3n2 − 1)(5n2 + 1)2

64αmµ
√
n2 − 1

√
P+P−

ln
vfP (1/vf ) +

√

P+P−(n2 − 1)(1− v2f )
P (vf )

, (3.6)

where

P± = 9n2 ± 4n+ 1.

Plotting (3.6) for various values of n close to 1, we can see that the energy decrease has a

regular shape (see Fig. 1). For all our practical purposes the particle loses “all” its energy during

some finite effective radiation time. However, since the decay is not exponential, the radiation

time must be defined in an unconventional way.

Assume that the maximum observed energy of a certain class of particles is Eobs � m. Then,

if we knew that Eobs 6 Elim we would obtain the bound

n 6
1

√

1− m2

E2

obs

. (3.7)
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Since we cannot exclude that our Eobs is greater than Elim, we must content ourselves with a

worse bound. However, we can show that the decay is so fast that the “worse” bound is for all

practical purposes as good as (3.7).

We consider ultrahigh-energy cosmic rays, for which we take the highest observed energy

Eobs = 3 · 1011GeV [14]. In most part of this paper, we assume that they are protons or iron

atoms moving in empty space. As far as the fine-structure constant α is concerned, we use the

value 1/116, namely the Standard-Model value of the running coupling at Eobs, calculated using

the beta functions of ref. [15], the value of α(Mz) of [16] and the values of MZ and sin θW (MZ)

from Particle Data Group [17]. We neglect the running of α from Eobs to ΛL, because it does not

affect out estimates very much. Indeed, α ∼ 1/113 at 1014GeV, and α ∼ 1/106 at 1019GeV.

Writing Eobs = rElim, with r > 1, we have

n(r) =
1

√

1− m2r2

E2

obs

.

The age of ultrahigh-energy cosmic rays cannot exceed

tf (r) = t(n(r), Eobs),

since when they were created they certainly had a finite energy. Plotting tf (r), we see that it

is a decreasing function of r and tends to infinity for r → 1+. If ultrahigh-energy primaries are

protons, it is easy to check that for r2 = 2 and µ = 1, for example, the time tf is just ∼10−10

seconds, which means that the particle loses all its energy down to Eobs in a few centimeters.

Since it certainly covers larger distances, we must have r <
√
2, therefore

n ∼ 1 +
r2

2
10−23 < 1 + 10−23.

Lowering r2 does not improve this bound so much, so we do not need to struggle to make r as

close as we can to 1 and tf (r) equal to the age of the Universe (or the time of some intergalactic

travel).

If ultrahigh-energy primaries are iron atoms we obtain the weaker bound

n < 1 + 3 · 10−20,

and tf ∼ 4·10−14 sec.

In summary, for our purposes the energy loss is so rapid that we do not make any relevant

mistake if we use (3.7).

1/ΛL-corrections Our model (2.1) predicts corrections to the results found above, which can

be calculated expanding in powers of m/ΛL. To illustrate integrability properties we consider

8



11
A

2
R

en
or

m
dt/dv, instead of dv/dt. The first correction to dt/dv is

∆
dt

dv
=

3µv2(n2 − 1)2(48b′′n4(nv − 1)2 + b′P2(v))

αΛLn2(nv − 1)4P (v)2
√
1− v2

, (3.8)

where

P2(x) = −3n2(3n4 + 8n2 − 3)x2 + 2n(23n4 + 1)x− 25n4 + 1

and v still stands for the uncorrected expression

v =

√

1− m2

E2
. (3.9)

We see that ∆(dt/dv) can be integrated analytically from v = 1 to any vf greater than vlim. We

do not report the lengthy result here. On the other hand, higher corrections to dt/dv cannot be

integrated around v = 1, because they contain factors (1− v2)k with k > 1 in the denominator.

The effects of 1/ΛL- corrections compete with those of n − 1, so the expansion in powers of

1/ΛL is meaningful only if n is not too close to one. In this section we have assumed that the

powers of n−1 are dominant. We have seen that the energy loss is so rapid that the phenomenon

is governed by pure kinematics, so corrections such as (3.8) are unnecessary. When n is equal

to 1, or sufficiently close to 1, there is no radiation to the zeroth order, or almost none, and we

cannot make a standard low-energy expansion. In the next sections we study the case when the

1/ΛL-effects are dominant.

4 Effects of higher space derivatives

The LVSM, of which (2.1) is a subsector, contains terms of higher dimensions. Under certain

conditions those terms are responsible for Cherenkov radiation in vacuo even if n is exactly one

or smaller than one. Some of them can even cause the radiation of neutral particles. In this

section we begin to study those effects. We first discuss the definition of ΛL and present our work

hypothesis. Then we study the kinematics of the Cherenkov process.

Definition of ΛL Each term of higher dimension contained in the LVSM can be used to define

a scale of Lorentz violation. Normalizing dimensionless coefficients to one, we can write a term

of this type as
1

Λdi−4
iL

Oi

where Oi is a local operator of dimension di > 4 constructed with the fields and their derivatives

and ΛiL is an energy scale, which can be regarded as the scale of Lorentz violation associated

with Oi.

9
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As far as we know, the values of such ΛiL’s may significantly differ from one another. So the

question is: which is the scale of Lorentz violation ΛL? The natural answer is: the smallest ΛiL,

namely the smallest energy scale at which the Lorentz violation may manifest itself. Since the

LVSM contains a finite number of parameters, this definition is meaningful in our approach. Yet,

it is a purely theoretical definition, because no sign of Lorentz violation has been observed so far.

At the theoretical level, not all parameters of the LVSM are on the same footing: most of

them could be set to zero without affecting the consistency of the model. Some parameters, on

the other hand, must necessarily be nonzero, because they are crucial for renormalizability. They

are the coefficients that multiply the quadratic terms of the largest dimensions of each particle:

the τ0’s of gauge groups and the b0’s of fermions. In the model (2.1) the crucial terms are

− τ0
4Λ4

L

Fij(−∂̄2)2Fij ,
ib0
Λ2
L

ψ̄D̄/ 3ψ, (4.1)

while parameters such as τ1, τ2 − 1, b1 − 1, etc. are not crucial.

We would like to set the noncrucial parameters to zero, to better isolate the effects of the

crucial ones. However, we have to check whether this is consistent with renormalization.

We can distinguish parameters according to the dimensions of the operators they multiply,

specifically their level di − 4. Renormalization mixing can equalize the orders of magnitude of

parameters belonging to the same level. It can also have important effects on parameters of higher

levels, but not so much on those of lower levels. Indeed, the beta functions of parameters belonging

to lower levels receive contributions that are suppressed by powers of m/ΛL. For definiteness,

consider the subset of couplings τ0,1, b0. Observe that τ0 is the only parameter of level 4, while

b0 and τ1 are of level 2. The beta functions have structures

βτ0 ∼ ατ0 + b20 + b0τ1 + τ21 , βb0 ∼ ατ1 + αb0 +
m2

Λ2
L

τ0, βτ1 ∼ ατ1 + αb0 +
m2

Λ2
L

τ0,

where we have written only the first contributing terms of each type. Since m/ΛL is around

10−12, at worst, parameters of lower levels can be consistently set to have much smaller values

than parameters of higher levels. In our case, τ0 will be of order 1 and b0 will be of order one or

much smaller than one.

This analysis is sufficient to justify the first scenario studied in the next section. Sometimes,

however, it is interesting to study cases where particular relations among parameters of the same

level hold, but then the effects of renormalization on those relations need to be studied carefully.

The second scenario studied in the next section provides an example of this.

To summarize, the parameters of the Lorentz violating extended Standard Model can be

arranged according to a hierarchy of conceptual importance, which may or may not correspond to

a hierarchy of magnitude. We take it as a work hypothesis to organize our analysis. We assume

10
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that the absolute values of the non-crucial parameters are as small as possible, and concentrate

on the crucial ones.

The values of the crucial parameters themselves can significantly differ from one another. The

largest of them defines ΛL. For example, if the scale of Lorentz violation ΛL is defined by the

crucial term belonging to the photon sector, namely

− 1

4
Fij

(−∂̄2)2
Λ4
L

Fij , (4.2)

then we can set τ0 = 1 for the photon, and assume that all other τ0’s, and the b0’s, are not

greater than 1. This choice sounds reasonable, indeed, because the photon sector contains the

best measured parameters among those multiplying operators of higher dimensions [1]. Under

these assumptions, our plan is to study how small the parameters b0’s have to be to explain data,

in particular ultrahigh-energy cosmic rays.

In the rest of this section we study the kinematics of a large class of dispersion relations. In

particular, we study the threshold for Cherenkov radiation and the range of frequencies of the

emitted photon.

General kinematics As before, p denotes the momentum of the incoming fermion, k is the

momentum of the emitted photon, u = cos θ and θ is the angle between the trajectory of the

incoming fermion and the photon.

We just assume that at p, k 6= 0 the dispersion relations E(p) and ω(k) are non-negative,

have positive first derivatives (namely velocities are always positive) and non-negative second

derivatives, and that at least one dispersion relation is convex:

E > 0, ω > 0,
dE

dp
> 0,

dω

dk
> 0,

d2E

dp2
> 0,

d2ω

dk2
> 0. (4.3)

These properties are obeyed by the usual relativistic and non-relativistic dispersion relations. In

relativistic dispersion relations convexity holds any time the mass is non-vanishing.

Energy and momentum conservations imply

E(p) = ω(k) + E(p′), p′ =
√

p2 + k2 − 2pku. (4.4)

The condition (4.4) is involved, but some inequalities that are useful for the calculation can be

derived straightforwardly. For example, we have

k < 2p. (4.5)

This information is quite redundant (the precise k-range is determined below), but enough for the

moment. It can be proved observing that E(p) − E(p′) > 0 implies p > p′, by the monotonicity

of E(p), while k > 2p would give p′ > p (using u 6 1).
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kmax

p′

p

p′ = p− k

p′(k)

k

p′ = k − p

Figure 2: General kinematics

Next, consider the condition of energy conservation (4.4) in the (k, p′)-plane and call its

solution p′(k). For given k the equation for p′ reads E(p′)=constant. Since the function E(p′) is

monotonic, the solution p′(k), when it exists, is unique. Second, p′ = |p − k| and p′ 6 p tell us

that we must focus on the region

|p− k| 6 p′ 6 p.

Third, k = 0, p′ = p is a solution of (4.4), so p′(0) = p.

Finally, p′(k) is monotonically decreasing and concave. These properties are proved differen-

tiating (4.4) with respect to k once and twice and using (4.3): we find, at k 6= 0,

dp′

dk
= −dω

dk

(

dE

dp

∣

∣

∣

∣

p′

)−1

< 0,
d2p′

dk2
= −

[

d2ω

dk2
+

d2E

dp2

∣

∣

∣

∣

p′

(

dp′

dk

)2
](

dE

dp

∣

∣

∣

∣

p′

)−1

< 0.

Here the notation X|p′ specifies where the function X has to be evaluated, namely X|p′ = X(p′).

Using these pieces of information, we can draw the picture of Fig. 2. We see that a non-trivial

range of solutions exists if and only if the first derivative of p′(k) is smaller than one in modulus

at k = 0, namely

− dp′

dk

∣

∣

∣

∣

0

< 1 or, equivalently,
dω

dk

∣

∣

∣

∣

0

<
dE

dp
, (4.6)

which means that the velocity of the charged particle must be greater than a certain threshold

determined by the photon dispersion relation, as in the usual case. Moreover, the k-range is the

segment

0 6 k 6 kmax(p), (4.7)

where kmax(p) is the solution of p′(kmax) = |p − kmax|, namely it is obtained from the forward

emission u = 1.

Observe that the condition (4.6) does not depend on most parameters of ω(k). When the

dispersion relations are (2.2), (4.6) does not depend on τ0 and τ1, but only τ2 and the parameters

of the fermion dispersion relation.
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5 Typical scenarios

In this section we study two scenarios and their compatibility with the observation of ultrahigh-

energy cosmic rays and other experimental data. Our purpose is to show that there exist reason-

able scenarios where the scale of Lorentz violation is smaller than the Planck scale.

From the propagators of (2.1), given in [8], we can derive the following sums over polarization

states, to be used in formula (2.8):

∑

λ

ε(λ)µ ε(λ)∗ν = diag
(

−ω2(k̄2)/k̄2,1
)

,
∑

s

us(p)ūs(p) = /p+m+ /̄p

(

b1 − 1 +
b0
Λ2
L

p̄2
)

+
b′

ΛL
p̄2,

∑

s

vs(p)v̄s(p) = /p−m+ /̄p

(

b1 − 1 +
b0
Λ2
L

p̄2
)

− b′

ΛL
p̄2. (5.1)

5.1 First scenario

In the first example we set all non-crucial parameters to zero apart from the mass, namely we

assume

τ2 = 1, τ1 = 0, b1 = 1, b′ = 0, b0 > 0. (5.2)

The results do not depend very much on the value of τ1 (see comment on this at the end of this

section). We have the dispersion relations

E(p2) =

√

m2 + p2
(

1 +
b0p2

Λ2
L

)2

, ω(k2) =

√

k2 + τ0
(k2)3

Λ4
L

. (5.3)

The inequality b0 > 0 is assumed to ensure monotonicity. The condition (4.6) gives

ξ2 ≡ m2Λ2
L

6b0p4
<

(

1 +
b0p

2

Λ2
L

)2(

1 +
3b0p

2

2Λ2
L

)

. (5.4)

We are interested in the case

m� p� ΛL, (5.5)

which can help us solve the kinematic constraints in an approximate way. Specifically, we have

p 6 3 · 1011GeV, ΛL > 1014GeV.

Within our approximation the right-hand side of (5.4) is practically 1, so the condition for the

emission of Cherenkov radiation is

ξ < 1, (5.6)

which can also be expressed as an energy threshold, namely

E > Elim ∼
m1/2Λ

1/2
L

61/4b
1/4
0

.
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A particle above threshold radiates and loses energy till it reaches the limit value Elim.

When ΛL → ∞ at m and p fixed, the condition (4.4) admits no solution, because it reduces

to the kinematic relation of the Lorentz invariant theory. It is more convenient to study the limit

ΛL →∞ at ξ and p fixed, because in such a limit (4.4) becomes

p = k +
√

p2 + k2 − 2pku,

so its solution is u = 1, k 6 p. For ΛL <∞ we can find an approximate solution of the form

u = 1− ε, 0 < ε� 1, (5.7)

with k belonging to a certain range of values that has to be worked out. We can expand in ε and

p/ΛL around the ΛL =∞-solution. We find

ε =
b0

pkΛ2
L

{

(p− k)
[

p3 − (p− k)3
]

− 3ξ2p3k
}

. (5.8)

We see that ε is indeed much smaller than one, as needed for consistency. The k-range can be

read from the condition ε > 0. Plotting the functions appearing in (5.8) it is easy to show that

for ξ < 1 a range of the form (4.7) exists and has kmax < p.

The energy losses (2.9) can be worked out starting from the differential width (2.8). For the

analysis of ultrahigh-energy cosmic rays it is sufficient to consider the situations ξ2 � 1 and

1− ξ2 � 1. For ξ2 � 1 we obtain the range

0 6 k 6 p(1− 3ξ2)

and the energy loss
dE

dt

∣

∣

∣

∣

ξ2�1

= −11αp4b0
12Λ2

L

. (5.9)

For 1− ξ2 � 1 we obtain the range

0 6 k 6
p

2
(1− ξ2),

and the energy loss

dE

dt

∣

∣

∣

∣

1−ξ2�1

= −αp
4
(

1− ξ2
)3

4Λ2
L

b0. (5.10)

The exact formulas depend also on b′′. However, we have set b′′ = 0, since b′′ is not in the list of

crucial parameters.

Recall that, since we have used the approximation (5.5), we cannot use (5.9) and (5.10) above

E = ΛL. As in the case of QED in a medium, the radiating particle takes an infinite amount of

time to reach the energy limit. For our purposes it is sufficient to calculate the time the particle
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takes to radiate from energy ΛL to, say, 1.3-1.1Elim. It is not meaningful to approach the energy

limit further, since the energies we are considering are not measured so precisely.

Now we apply our results to ultrahigh-energy cosmic rays. If ΛL = 1014GeV, protons of

3 · 1011GeV emit Cherenkov radiation if b0 > 1.8 · 10−19. If ΛL = 1014GeV and b0 = 1.8 · 10−19

we can use (5.9) as long as ξ is small, for example down to 2Elim (ξ2 = 1/16). The time spent to

radiate from ΛL to 2Elim is

t′f ∼ 7 · 10−12sec.

When the energy approaches Elim we have to use (5.10). The particle radiates from energy 2Elim

to 1.1Elim in about

t′′f ∼ 8 · 10−10sec.

The radiation time tf = t′f + t′′f is too short to be compatible with the observation of ultrahigh-

energy cosmic rays. Therefore, as in section 2, we may assume that the energy loss down to Elim

occurs instantaneously any time it is allowed by kinematics.

Larger values of b0 give smaller tf ’s. For example, if b0 ∼ 1 and ΛL = 1014GeV particles radiate

down to Elim = 6·106GeV in a much shorter time. Integrating (5.9) from ΛL to Eobs = 3·1011GeV,

we obtain

t′f ∼ 10−29sec,

while continuing down to 1.1Elim we have to use both (5.9) and (5.10), and get

t′′f ∼ 2 · 10−14sec.

Thus, only the values b0 6 1.8 · 10−19 are consistent with data if ΛL = 1014GeV and the cosmic

rays are protons.

The limiting value on b0 can be raised increasing ΛL. For various values of ΛLthe bounds on

b0 are

b0lim = 1.8 · 10−19+2k for ΛL = 1014+kGeV (5.11)

and b0lim = 1 for ΛL = 2.4 · 1023GeV. When ΛL is varied between 1014GeV and the Planck scale

tf does not change very much.

If the ultrahigh-energy cosmic rays are iron atoms we get the bounds

b0lim = 5.6 · 10−16+2k for ΛL = 1014+kGeV (5.12)

and b0lim = 1 for ΛL = 4.2 · 1021GeV.

We have also considered a variant of (5.2), with τ1 = 2
√
τ0 instead of τ1 = 0. The radiation

times are still too short and the threshold condition is exactly the same, therefore the bounds

(5.11) and (5.12) are unchanged.

Most bounds we have found are very small. However, the situation improves if we take

compositeness into account. Before that, we study a second scenario.
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5.2 Second scenario

The procedure just used is quite general, and can be used to examine other cases. We illustrate

a second scenario taking the dispersion relations

E(p2) =

√

m2 + p2 + b20
(p2)3

Λ4
L

, ω(k2) =

√

k2 + τ0
(k2)3

Λ4
L

, (5.13)

for the fermion energy and photon frequency. Here we assume that the parameters of the La-

grangian (2.1) satisfy

b0 = −
b′2

2b1
, b1 =

√

1− 2
mb′

ΛL
, τ2 = 1, τ1 = 0, (5.14)

namely they are such that only the highest powers of momentum, which are the crucial ones for

renormalization, correct the relativistic dispersion relations.

Here it is convenient to define

ξ ≡ Λ2
Lm√

5|b0|p3
. (5.15)

The approximate condition for emission is again ξ < 1. The limit energy is

Elim =
Λ
2/3
L m1/3

51/6|b0|1/3
.

Setting u = 1− ε as before and ζ ≡ b20/τ0, we find

ε ∼ b20
2pkΛ4

L

{

(p − k)
[

p5 − (p − k)5 − k5

ζ

]

− 5ξ2p5k

}

. (5.16)

For ζ � 1 it is sufficient to consider the case ζ � (1− ξ2)3, which gives the k-range

0 6 k 6 p(5ζ(1− ξ2))1/4. (5.17)

We find, to the lowest order in 1/ΛL and ζ (at fixed τ0), the energy loss

dE

dt

∣

∣

∣

∣

ζ�1,ζ�(1−ξ2)3
= −5α(1− ξ2)ζ3/2√τ0p4

4Λ2
L

. (5.18)

As before, we have set b′′ = 0. Instead b′ must be kept, because formulas (5.14) relate it to b0.

Note that since b1 ∼ 1, b0 must be negative. Thus we have b′2 ∼ −2b0 = 2
√
ζτ0.

Formula (5.18) can be integrated exactly. We obtain

E3(t)
∣

∣

ζ�1,ζ�(1−ξ2)3
= E3

lim

Λ3
L cosh(κt) + E3

lim sinh(κt)

Λ3
L sinh(κt) + E3

lim cosh(κt)
, (5.19)
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where

κ =
3
√
5

4
αmζ.

and the initial condition is fixed setting E(0) = ΛL. Formula (5.19) allows us to define a radiation

time in a familiar way, since it contains only exponentials. We have

tf |ζ�1,ζ�(1−ξ2)3 ∼
1

κ
, (5.20)

which is strictly speaking the time taken to reach the energy ∼ 1.1Elim (assuming ΛL � Elim,

which is true in the cases studied here).

If ζ = 1 we need to distinguish the cases ξ2 � 1 and 1− ξ2 � 1. We find the k-ranges

0 6 k 6 p(1− ξ), 0 6 k 6
p

3
(1− ξ2),

and the energy losses

dE

dt

∣

∣

∣

∣

ζ=1,ξ2�1

= −αp
4|b0|

20Λ2
L

,
dE

dt

∣

∣

∣

∣

ζ=1,ξ2∼1

= −α(1 − ξ
2)4|b0|p4

324Λ2
L

, (5.21)

respectively.

We take τ0 = 1, which means that we assume that the scale of Lorentz violation ΛL is

defined by the photon sector, precisely by the first term of (4.1). With ΛL = 1014GeV, protons

of 3 · 1011GeV emit Cherenkov radiation if |b0| > 1.6 · 10−7. If we take b0 = −1.6 · 10−7 the

approximation ζ � (1− ξ2)3 holds in the entire energy range from ΛL down to 1.1Elim. We find

that the typical radiation time of the particles above threshold is

tf ∼ 2 · 10−9sec.

Again, larger values of b0 give smaller tf ’s. For example, if b0 ∼ 1 and ΛL = 1014GeV a proton

of energy Ef = 3 · 1011GeV has ξ ∼ 10−7, so the time it spends to radiate from energy ΛL to the

final energy Ef � Elim can be calculated using the first formula of (5.21). We find

tf |ζ=1,ξ2�1 ∼
40Λ2

L

3αb′2E3
f

. (5.22)

Numerically, taking b0 = −1 and b′ ∼
√
2, we have

tf ∼ 2 · 10−28sec. (5.23)

After this time, the cosmic rays keep radiating till they reach the limit energy, which is Elim ∼
1.6 · 109GeV. We can use the first formula of (5.21) as long as ξ2 is small, for example down to

2Elim (ξ2 = 1/64). The time spent to radiate from ΛL to 2Elim is

t′f ∼ 1.6 · 10−22sec.
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When the energy approaches Elim we have to use the second formula of (5.21). The particle

radiates from energy 2Elim to 1.1Elim during

t′′f ∼ 6 · 10−20sec, (5.24)

which is still very short.

Summarizing, we may assume that the energy loss is instantaneous, so only the values |b0| 6
1.6 · 10−7 are consistent with data at ΛL = 1014GeV. The limiting value on |b0| can be raised

increasing ΛL and becomes 1 for ΛL = 2.5 · 1017GeV. If b0 ∼ 1 and ΛL ≥ 2.5 · 1017GeV, protons

of 3 · 1011GeV do not emit Cherenkov radiation and can reach the earth. Protons above threshold

have a radiation time t′f + t′′f of about 6 · 10−20sec. We obtain the bounds

|b0lim| = 1.6 · 10−7+2k, for ΛL = 1014+kGeV, (5.25)

and |b0| = 1 for ΛL = 2.5 · 1017GeV. If the ultrahigh-energy cosmic rays are instead iron atoms

their observation can be explained, for example, with |b0| ∼ 1, |b′| ∼
√
2 and ΛL ∼ 3.4 · 1016GeV,

or with |b0| ∼ 9 · 10−6, |b′| ∼ 4 · 10−3 and ΛL ∼ 1014GeV.

Since we have assumed that the relations (5.14) hold, we must check the compatibility of b′

and b1 with present data. Using b1 ∼ 1, p� ΛL and (5.14), (5.15) we get

− Λ2
Lm√
5p3

6 b0 < 0, |b′| 6
(

4

5

)
1

4 ΛLm
1/2

p3/2
, 1−

(

4

5

)
1

4

(

m

p

)
3

2

6 n 6 1 +

(

4

5

)
1

4

(

m

p

)
3

2

.

(5.26)

Here p is the largest momentum at which the particle is known not to radiate and n = b1/
√
τ2

is the refractive index of the vacuum “as seen by the proton”. Observe that the bound on the

refractive index is independent of ΛL, so it cannot be improved changing the scale of Lorentz

violation.

The three inequalities (5.26) are equivalent to one another. We search for the largest |b0|
compatible with data. If |b0| is not small enough, n may be too far from one, which may contradict

existing bounds.

If b′ > 0 we find 1 − 5 · 10−18 6 n < 1. At present no bounds contradict this range [1].

Instead, if b′ < 0 we find 1 < n 6 1 + 5 · 10−18. In this case, a bound exists in the literature,

n < 1 + 6 · 10−20 [12, 1], but it cannot be applied here, since it is derived from ultrahigh-energy

cosmic rays themselves, which we are explaining with a different approach. Thus, the largest |b0|
we can take is given by

b0 = −
Λ2
Lm√
5p3

. (5.27)

Now we discuss the consistency of the dispersion relations (5.13) with renormalization. The

first condition of (5.14) demands that the combination
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ε ≡ 2b1b0 + b′2

vanish, to ensure that the dispersion relations do not contain terms proportional to the forth power

of momentum. A typical case with ε different from zero is the first scenario already studied. The

b0-bounds of (5.11) and (5.12) tell us how small ε must be to have compatibility with data, in

the cases of protons and iron atoms, respectively. For example, for protons ε ∼ 4 · 10−19 at

ΛL = 1014GeV. Instead, the results found in the second scenario tell us 2b1b0 ∼ b′2 ∼ 3.2 · 10−7,

which is 12 orders of magnitude larger!

For the reasons explained in the previous section, we may assume that the relations (5.14) are

valid at the scale ΛL, or anyway just at one energy scale. However, the scale we need to work with

is Eobs = 3 · 1011GeV. The b0- and b′-runnings contain, among the others, terms proportional to

αb0 ln
ΛL

Eobs

, αb′ ln
ΛL

Eobs

.

So, assuming that the cancellation ε = 0 occurs at ΛL it will not necessarily occur at Eobs, where

instead we find

ε ∼ αb0 ln
ΛL

Eobs

.

The values of (5.25) give a too large ε. Therefore, renormalization forces us to take b0-values

much smaller than the ones given in (5.25). Precisely, they are just a factor

1

α ln ΛL

Eobs

(5.28)

larger than the bounds (5.11) and (5.12). Still, the factor (5.28) improves the first scenario by

about an order of magnitude.

6 Composite particles

In the previous section we have used the dispersion relations predicted by our models (A.1) and

(2.1) for elementary particles, but we have applied them to composite particles, such as protons

and iron atoms. In this section we investigate the dispersion relations of composite particles and

discuss some phenomenological consequences. In particular, we show that in composite particles

lower values of b0 are favored.

A good starting point is to assume that at high energies the composite particle can be described

in a purely kinematic way, namely by constituents moving with the same velocity v. The effects

of interactions among constituents will not be studied in this paper. Instead, the low-energy

dispersion relation is just the relativistic one. Later we paste it together with the high-energy
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dispersion relation and obtain an approximate dispersion relation for the composite particle, valid

both at low and high energies.

We begin considering constituents with dispersion relations

Ei = |pi|

√

1 +

(

η2i p
2
i

Λ2
L

)n−1

. (6.1)

Their velocities are

vi =
dEi

dpi
=

pi

Ei

(

1 + n

(

η2i p
2
i

Λ2
L

)n−1
)

, (6.2)

where pi = |pi|. Setting vi = v for every i it is easy to derive the dispersion relation of the

composite particle. Calling

xi =

(

η2i p
2
i

Λ2
L

)n−1

(6.3)

and squaring (6.2), we get the equations

v2(1 + xi) = (1 + nxi)
2 .

Their solutions are

xi =
v2 − 2n+ v

√

v2 + 4n(n− 1)

2n2
≡ x(v).

(It is easy to check that the other solution of the quadratic equation is not acceptable). Then we

have

pi =
x1/(2n−2)

ηi
ΛL, pi = v

Ei

1 + nx
, Ei =

x1/(2n−2)

ηi
ΛL

√
1 + x,

and therefore the total momentum and total energy are

P =
∑

i

pi = v
E

1 + nx
, E =

∑

i

Ei =
x1/(2n−2)

η
ΛL

√
1 + x,

where η is defined by
1

η
=
∑

i

1

ηi
. (6.4)

Moreover, since pi = vpi/v, we have also

P =
∑

i

pi =
x1/(2n−2)

η
ΛL, x =

(

η2P2

Λ2
L

)n−1

.

Thus, we find that E and P are related by the collective dispersion relation

E = |P|
√

1 +

(

η2P2

Λ2
L

)n−1

,
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which has the same form as the dispersion relations (6.1) of the constituents.

The crucial result is the composition rule (6.4), which states that “the weakest wins”, namely if

one constituent has a ηı̄ much smaller than the ηi’s of the other constituents, then the composite

particle has a η practically equal to ηı̄.

Note that for n = 0, mi = ΛL/ηi, we get the dispersion relation of relativistic theories, with

the usual composition rule for the mass, namely
∑

imi =
∑

i ΛL/ηi = ΛL/η =M .

The result just found can be extended to more general dispersion relations of the form

Ei = |pi|f (xi) , xi =

(

η2i p
2
i

Λ2
L

)n−1

. (6.5)

Squaring the velocities

vi =
dEi

dpi
=

pi

|pi|
(

f + 2(n− 1)xif
′
)

(6.6)

and equating them to v, we get the equations

v2 =
(

f(xi) + 2(n − 1)xif
′(xi)

)2
.

Assume that the solution is unique, xi = x(v). Then, proceeding as above, we easily find that E

and P are related by the collective dispersion relation

E = |P|f(x), x =

(

η2P2

Λ2
L

)n−1

,

where η is still given by (6.4). Again, the dispersion relation of the composite particle has the

same form as the dispersion relations of its constituents.

Although the procedure just outlined is general, few dispersion relations can be treated so

simply. More complicated relations generate polynomial equations of high degree, and the dis-

persion relation of the composite particle does not have the form of the dispersion relations of

its constituents. To convince oneselves of this, it is sufficient to repeat the derivation adding

mass terms to (6.1) and (6.5). Yet, masses are important for the Cherenkov effect, because they

determine the energy threshold. To apply our results to ultrahigh-energy cosmic rays we argue as

follows.

The dispersion relations (6.1) and (6.5) are good approximations at high energies, namely

when the Lorentz violating corrections start to become important and the mass becomes negligible

with respect to them. These are precisely the energies above threshold. Indeed, the emission of

radiation is the first effect of the Lorentz violation in the phenomenon we are considering. Instead,

at energies much smaller than the threshold the Lorentz violating corrections become negligible

with respect to the mass, and the usual relativistic dispersion relation E =
√

M2 + p2 holds,

where M is the mass of the composite particle. The full dispersion relation of the composite

particle can be well approximated pasting the low- and high-energy dispersion relations.
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Now, consider ultrahigh-energy cosmic rays. In our model, setting all non-crucial parameters

but the mass to zero as in (5.2), or relating the parameters as in (5.14), at high energies quarks

have dispersion relations (6.5) with n = 2, f(x) = 1+x, or (6.1) with n = 3, respectively. In both

cases η2i = |b0i|. Thus, the dispersion relation of the composite particle can be approximated by

the formulas

E =

√

M2 + p2
(

1 + η2
p2

Λ2
L

)2

, E =

√

M2 + p2 + η4
(p2)3

Λ4
L

,

in the first and second scenarios, respectively, where η is determined by equation (6.4).

Let us illustrate some basic properties of the composition rule (6.4). Consider the proton. Its

dispersion relation has the same form as the dispersion relations of its constituents, with

|b0p| = η2 =

(

2

|b0u|1/2
+

1

|b0d|1/2
)−2

,

where b0u and b0d are the b0-parameters of the quarks u and d, respectively. If |b0d| � |b0u| then

|b0p| ∼ |b0d|, while if |b0u| � |b0d| then |b0p| ∼ |b0u|/4. This means that in composite particles,

smaller values of |b0| are favored and the energy threshold for Cherenkov radiation is enhanced.

In practice, compositeness creates a sort of screening for the emission of radiation and makes it

easier to justify the small numbers found in the previous section.

We have no reason to assume that |b0u| and |b0d| are of the same orders. Let us first assume

|b0u| � |b0d| and normalize τ0 to one, as usual. Then, if ultrahigh-energy cosmic rays are protons

we have

|b0p| ∼ |b0d|,

while if they are iron atoms we gain an extra factor 7396:

b0iron =

(

82

|b0u|1/2
+

86

|b0d|1/2
)−2

∼ |b0d|
7396

.

In the first scenario described in the previous section the observation of ultrahigh-energy cosmic

rays made of iron atoms can be explained with

b0d = 4.1 · 10−12+2k for ΛL = 1014+kGeV,

and b0d = 1 for ΛL = 4.9 · 1019GeV.

We see that when the composite structure gets more complex it becomes easier to generate

small number from larger ones. Patterns like e.g.

τ0 =1, b0u ∼ 10−6, b0d ∼ 4 · 10−12, ΛL ∼ 1014GeV,

τ0 =1, b0u ∼ 10−3, b0d ∼ 4 · 10−6, ΛL ∼ 1017GeV,
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are compatible with a scale of Lorentz violation smaller than the Planck scale. The values of

b0u have been chosen to lie somewhere in the middle between those of τ0 and those of b0d for

illustrative purposes.

In the second scenario we can gain an extra factor (5.28) and can explain the same b0iron’s

with slightly larger b0d’s:

τ0 =1, b0u ∼ 10−6, b0d ∼ 5 · 10−11, ΛL ∼ 1014GeV,

τ0 =1, b0u ∼ 10−3, b0d ∼ 3 · 10−5, ΛL ∼ 1017GeV,

Finally, if we assume b0u ∼ b0d we gain another factor 4:

|b0p| ∼ |b0n| ∼
|b0u|
9
, b0iron ∼

|b0u|
28224

.

7 Cherenkov radiation of neutrons and neutrinos

We know that when Lorentz symmetry is violated, several otherwise forbidden phenomena are

allowed. In this section we describe the Cherenkov radiation of neutral particles. Because of

the Lorentz violation, photon emission is allowed by kinematics. Moreover, our models contain

Pauli-like terms at the fundamental level, which couple neutral particles to the electromagnetic

field. We take neutrons and neutrinos and consider both the Cherenkov radiation in a medium

and the effects of higher-derivative terms.

The neutron Lagrangian is

Lneutron =LF + ψ̄n

(

iγ0∂0 +
ib0n
Λ2
L

∂̄/ 3 + ib1n∂̄/−mn −
b′n
ΛL

∂̄/ 2

)

ψn

+
e

ΛL
ψ̄n

(

b′′nσijF
ij +

b′0n
ΛL

γi∂jFij

)

ψn + ie
b′′0n
2Λ2

L

Fij

(

ψ̄nγi
←→̄
D jψn

)

and the kinematics of the Cherenkov process is the one of section 4. The Cherenkov radiation

can be studied adapting the results found for the proton. Indeed, after replacements of the form

b′′ =
b̃′′

e
, b′0 =

b̃′0
e
, b′′0 =

b̃′′0
e
, (7.1)

the neutron Lagrangian matches the proton Lagrangian at e = 0. As far as the Cherenkov

radiation in a medium is concerned, we must evaluate formulas up to O(1/Λ2
L) corrections, perform

the replacements (7.1), followed by the limit e→ 0 and the converse replacements. We find

dv

dt
= − 16αm3

nµ
5b′′2n (nv − 1)4

15Λ2
Ln

8(n2 − 1)5v2
√
1− v2

[

(5n2 − 1)(6n2 + 1)− 4n(n2 + 1)v − 5n2(5n2 − 1)v2
]

,

with the velocity v defined as in (3.9).
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We can also make an analysis similar to the one of section 5. In the limit b20n � τ0, the

analogue of (5.20) gives the typical radiation time

tfn|b2
0n

�τ0
∼ τ0

6
√
5b′′n

2|b0n|αmn

.

In both cases we see that the Cherenkov radiation of neutrons crucially depends on the pa-

rameter b′′n, besides τ0 and b0n. Thus, measurements cannot say much about the scales of Lorentz

violation, which are our main interest in this paper, but can put bounds on the values of the

parameters b′′n. Nevertheless, some aspects of the neutron Cherenkov radiation may deserve fur-

ther study, since it is known that in some cases the Lorentz violation makes protons decay into

neutrons [10]. Then ultrahigh-energy cosmic rays could be regarded as a mixture of protons and

neutrons and both particles would contribute to the emission of Cherenkov radiation.

If neutrinos are taken to be massive, their case is entirely analogous to the case of the neutron.

Instead, if we neglect their mass (or assume that they are massless and that neutrino oscillations

have a different explanation) the Lagrangian that describes interactions with the electromagnetic

field is

Lneutrino = LF + ν̄

(

iγ0∂0 +
ib0ν
Λ2
L

∂̄/ 3 + ib1ν ∂̄/

)

ν +
eb′0ν
Λ2
L

∂jFij(ν̄ γiν) + ie
b′′0ν
2Λ2

L

Fij

(

ν̄γi
←→
∂ jν

)

.

Here the effect is of higher order, because b′′ is absent. Moreover, at vanishing mass the kinematics

also changes. For example, in the case b1ν = τ2 = 1, τ1 = 0, we find the k-range 0 6 k 6 p and

dE

dt
= −517b0να(4b

′2
0ν + b′′20ν )p

8

10080Λ6
L

.

8 Conclusions

If Lorentz symmetry is violated at high energies, a variety of phenomena that are normally

forbidden can take place. The investigation of these phenomena can help us better address the

search for signs of Lorentz violation and put bounds on the parameters of the violation. In this

paper we have focused on the Cherenkov radiation in vacuo, and explored scenarios compatible

with a scale of Lorentz violation ΛL smaller than the Planck scale. We have worked in the

realm of the minimal Standard-Model extension that violates Lorentz symmetry at high energies,

preserves CPT and rotational invariance, contains operators of higher dimensions (in particular,

four-fermion vertices) and is renormalizable by weighted power counting. This SM extension offers

a framework where the set of new parameters is large enough to describe the phenomena allowed

by Lorentz violation, but sufficiently restricted to ensure a certain degree of predictivity.

We have studied kinematic constraints for a very general class of dispersion relations, and

found an energy threshold below which particles do not radiate. We have computed the energy
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loss of particles above threshold and verified that it is so rapid that in all cases of interest the

process is practically governed by pure kinematics. For different values of the scale ΛL we have

studied how small certain parameters must be to have compatibility with known experimental

bounds on the Lorentz violation. Interestingly, in composite particles “small numbers” are easier

to explain, because the threshold for Cherenkov radiation is enhanced by a sort of kinematic

screening mechanism.

Our analysis shows that there is still the possibility that the scale of Lorentz violation, with

preserved CPT, is smaller than Planck scale. If confirmed, this prediction would force us to think

about quantum gravity anew.
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Appendix: the simplest LVSM’s

For reference, in this appendix we briefly recall the simplest LVSM’s and some of their features.

The minimal scalarless CPT invariant LVSM schematically reads [6]

LnoH = LF + Lkinf −
5
∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I γ̄χI) +
Yf
Λ2
L

χ̄χχ̄χ− g

Λ2
L

F̄ 3, (A.1)

where

LF =
1

4

∑

G

(

2FG
0iF

G
0i − FG

ij τ
G(Ῡ)FG

ij

)

,

Lkinf =
3
∑

a,b=1

5
∑

I=1

χ̄a
I i

(

δabγ0D0 −
bIab0

Λ2
L

D̄/ 3 + bIab1 D̄/

)

χb
I ,

are the kinetic terms of gauge fields and fermions, respectively. Bars are used to denote space

components. The “magnetic” components Fij of the field strengths are also denoted with F̄ .

Moreover, χa
1 = La = (νaL, `

a
L), χ

a
2 = Qa

L = (uaL, d
a
L), χ

a
3 = `aR, χa

4 = uaR and χa
5 = daR, νa =

(νe, νµ, ντ ), `
a = (e, µ, τ), ua = (u, c, t) and da = (d, s, b). The sum

∑

G is over the gauge groups

SU(3)c, SU(2)L and U(1)Y , and the last three terms of (A.1) are symbolic. Finally, Ῡ ≡ −D̄2/Λ2
L,

where ΛL is the scale of Lorentz violation, and τG are polynomials of degree 2. Gauge anomalies

cancel out exactly as in the Standard Model [5].
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The model (A.1) does not contain elementary scalar fields, but four-fermion vertices trigger

a Nambu–Jona-Lasinio mechanism that gives masses to fermions and gauge fields, and generate

Higgs bosons at low energies as composite fields [6, 18].

LVSM versions containing elementary scalar fields and incorporating the usual Higgs phe-

nomenon exist as well. They can contain the two-scalar–two-fermion vertex (LH)2/ΛL and four-

fermion vertices (ψ̄ψ)2/Λ2
L at the fundamental level.

After symmetry breaking, the vertex (LH)2/ΛL gives (Majorana) masses to the left-handed

neutrinos. Since this vertex is the only dimension-5 vertex present in the LVSM, it can be used to

normalize the scale ΛL. Assuming that the dimensionless couplings in front of it are of order one

we find ΛL ∼ 1014-1015GeV [19]. Four-fermion vertices can describe proton decay. The existing

bounds on proton decay can also be used to constrain ΛL, and give ΛL >1015GeV.

Other prescriptions to normalize ΛL are considered in the paper.
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