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Abstract

We classify the unitary, renormalizable, Lorentz violating quantum field theories of interacting scalars

and fermions, obtained improving the behavior of Feynman diagrams by means of higher space derivatives.

Higher time derivatives are not generated by renormalization. Renormalizability is ensured by a “weighted

power counting” criterion. The theories contain a dimensionful parameter ΛL, yet a set of models are

classically invariant under a weighted scale transformation, which is anomalous at the quantum level.

Formulas for the weighted trace anomaly are derived. The renormalization-group properties are studied.
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1 Introduction

The set of power-counting renormalizable theories is considerably restricted by the assumptions of

unitarity, locality, causality and Lorentz invariance. If we relax one or some of these assumptions

we can enlarge the set of renormalizable theories. However, usually the enlargement is too wide.

For example, there exist an infinite set of renormalizable nonunitary theories. Improving the

behavior of propagators at large momenta with the help of higher-derivative kinetic terms [1] it is

possible to define a renormalizable higher-derivative version of every theory, including gravity [2].

Relaxing locality can in principle make every theory renormalizable, smoothing away the small

distance singularities that originate the UV divergences [3]. Unitarity violations due to higher

derivatives can in some cases be traded for causality violations [4, 5].

The purpose of this paper is to investigate the issue of renormalizability in the presence of

Lorentz violations, while preserving both locality and unitarity. The UV behavior of propagators

is improved with the help of higher space derivatives. It is proved that, under certain conditions,

renormalization does not turn on terms with higher time derivatives, thus preserving unitarity.

Renormalizability follows from a modified power-counting criterion, which weights time and space

differently. The set of consistent theories is still very restricted, yet considerably larger than the

set of Lorentz invariant theories. Renormalizable models exist in arbitrary spacetime dimensions.

The quadratic terms that contain higher space derivatives, as well as certain vertices, are

multiplied by inverse powers of a scale ΛL. Despite the presence of the dimensionful parameter

ΛL certain models have a weighted scale invariance, which is anomalous at the quantum level.

The weighted trace anomaly is worked out explicitly.

In this paper we concentrate on scalar and fermion theories, leaving the study of gauge theo-

ries and gravity to separate publications. Lorentz violating models with higher space derivatives

might be useful to define the ultraviolet limit of theories that are otherwise nonrenormalizable,

including quantum gravity, and allow to remove the divergences with a finite number of indepen-

dent couplings. Other domains where the models of this paper might find applications are Lorentz

violating extensions of the Standard Model [6], effective field theory [7], renormalization-group

(RG) methods for the search of asymptotically safe fixed points [8], nonrelativistic quantum field

theory for nuclear physics [9], condensed matter physics and the theory of critical phenomena

[10]. Certain ϕ4-models that fall in our class of renormalizable theories are useful to describe the

critical behavior at Lifshitz points [11] and have been widely studied in that context [12], with a

variety of applications to real physical systems. Effects of Lorentz and CPT violations on stabil-

ity and microcausality have been studied [13], as well as the induction of Lorentz violations by

the radiative corrections [14]. The renormalization of gauge theories containing Lorentz violating

terms has been studied in [15]. For a recent review on astrophysical constraints on the Lorentz

violation at high energy see ref. [16].

2



07
A

2
R

en
or

m
The paper is organized as follows. In section 2 we study the renormalizability of scalar the-

ories, while in section 3 we include the fermions. In section 4 we analyze the divergent parts

of Feynman diagrams and their subtractions. We prove the locality of counterterms and study

the renormalization algorithm to all orders. The one-loop divergences are computed explicitly.

In section 5 we analyze the renormalization structure and the renormalization group. In section

6 we study the energy-momentum tensor, the weighted scale invariance and the weighted trace

anomaly. In section 7 we generalize our results to nonrelativistic theories. Section 8 contains

the conclusions. In the appendices we collect more observations about the cancellation of sub-

divergences and the locality of counterterms, and some expressions of Euclidean propagators in

coordinate space.

Preliminaries. We use the dimensional-regularization technique whenever possible. Since the

analysis of divergences is the same in the Euclidean and Minkowskian frameworks, we write our

formulas directly in the Euclidean framework, which is more explicit. Yet, with an abuse of

language, we still speak of “Lorentz symmetry”, since no confusion is expected to arise.

We first consider models where the d-dimensional spacetime manifold Md is split into the

product M
d̂
⊗Md of two submanifolds, a d̂-dimensional submanifold M

d̂
, containing time and

possibly some space coordinates, and a d-dimensional space submanifold Md. Lorentz and rota-

tional symmetries in the two submanifolds are assumed. This kind of splitting could be useful

to describe specific physical situations (for example the presence of a non isotropic medium in

condensed matter physics), but here it is mainly used as a starting point to illustrate our argu-

ments in concrete examples. Indeed, most Lorentz violating theories contain a huge number of

independent vertices, so it is convenient to begin with models where unnecessary complicacies

are reduced to a minimum. The extension of our construction to the most general case, which is

rather simple, will be described later. In the same spirit, a number of discrete symmetries, such

as parity, time reversal, ϕ→ −ϕ, etc., are often assumed.

To apply the dimensional-regularization technique, both submanifolds have to be continued

independently. The total continued spacetime manifold MD is therefore split into the product

M
D̂
⊗MD, where D̂ = d̂− ε1 and D = d− ε2 are complex and D = D̂+D. Each momentum p is

split into “first” components p̂, which live in MD̂, and “second” components p, which live in MD:

p = (p̂, p). The spacetime index µ is split into hatted and barred indices: µ = (µ̂, µ). Notations

such as p̂µ̂, p̂µ and pµ̂ refer to the same object, as well as pµ, pµ, pµ. Frequently, Latin letters are

used for the indices of the barred components of momenta. Finally, 4 ≡ ∂i∂i.

We say that Pk,n(p̂, p) is a weighted polynomial in p̂ and p, of degree k and weight 1/n, where

k is a multiple of 1/n, if Pk,n(ξ
np̂, ξp) is a polynomial of degree kn in ξ. Clearly,

Pk1,n(p̂, p)Pk2,n(p̂, p) = Pk1+k2,n(p̂, p).
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We say that Hk,n(p̂, p) is a homogeneous weighted polynomial in p̂ and p, of degree k and weight

1/n, if Hk,n(λp̂, λ
1/np) = λkHk,n(p̂, p). It is straightforward to prove that a weighted polynomial

Pk,n of degree k can be expressed as a linear combination of homogeneous weighted polynomials

Hk′,n of degrees k′ ≤ k.

2 Renormalizability by weighted power counting

In this section we classify the renormalizable Lorentz violating scalar field theories that can be

constructed with the help of quadratic terms containing higher space derivatives and prove that

renormalization does not generate higher time derivatives.

Consider a generic scalar field theory with a propagator defined by the quadratic terms

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2, (2.1)

where ΛL is an energy scale. Up to total derivatives it is not necessary to specify how the 2n

derivatives ∂ contract among themselves. The n of (2.1) should be understood as the highest

power of ∂ that appears in the quadratic terms of the total lagrangian. Other quadratic terms of

the form
am

2Λ2m−2
L

(∂
m
ϕ)2, m < n, (2.2)

could be present, or generated by renormalization. They are weighted monomials of degrees

< 2 and weight 1/n. For the purposes of renormalization, it is convenient to consider such

terms as “interactions” (two-leg vertices) and treat them perturbatively. Indeed, the counterterms

depend polynomially on the parameters am, because when the integral associated with a graph is

differentiated a sufficient number of times with respect to the am’s it becomes overall convergent.

The am-polynomiality of counterterms generalizes the usual polynomiality in the masses. Thus

we can assume that the propagator is defined by (2.1) and treat every other term as a vertex.

Then the propagator is the inverse of a weighted homogeneous polynomial of degree 2 and weight

1/n. The coefficient of the term (∂
n
ϕ)2 must be positive, to have an action bounded from below

in the Euclidean framework or, equivalently, an energy bounded from below in the Minkowskian

framework.

Label the vertices that have N ϕ-legs with indices α, to distinguish different derivative struc-

tures. Each vertex of type (N,α) defines a monomial in the momenta of the fields. Denote the

weighted degree of such a monomial by δ
(α)
N . A vertex with p1 derivatives ∂̂, p2 derivatives ∂ and

N ϕ-legs is symbolically written as [
∂̂p1∂

p2
ϕN
]
α

and its weighted degree is

δ
(α)
N = p1 +

p2
n
.
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Consider a Feynman graph G made of L loops, E external legs, I internal legs and v
(α)
N vertices

of type (N,α). The integral associated with G has the form

IG(k) =

∫
dLD̂p̂

(2π)LD̂

∫
dLDp

(2π)LD

I∏

i=1

P
(i)
−2,n(p, k)

V∏

j=1

V
(j)
δj ,n

(p, k),

where p are the loop momenta, k are the external momenta, P
(i)
−2,n are the propagators, which

have weighted degree −2, and V
(j)
δj ,n

are the vertices, with weighted degrees δj . The integral

measure dD̂p̂ dDp is a weighted measure of degree Ð≡ D̂ + D/n. Performing a rescaling

(k̂, k) → (λk̂, λ1/nk), accompanied by an analogous change of variables (p̂, p) → (λp̂, λ1/np),

it is straightforward to prove that IG(k) is a weighted function of degree

LÐ− 2I +
V∑

j=1

δj = LÐ− 2I +
∑

(N,α)

δ
(α)
N v

(α)
N .

By the locality of counterterms, once the subdivergences of G have been inductively subtracted

away, the overall divergent part of G is a weighted polynomial of degree

ω(G) = Lđ− 2I +
∑

(N,α)

δ
(α)
N v

(α)
N

in the external momenta, where đ≡ d̂+ d/n. The usual relations

L = I − V + 1, E + 2I =
∑

(N,α)

Nv
(α)
N , (2.3)

allow us to write

ω(G) = d(E) +
∑

(N,α)

v
(α)
N

[
δ
(α)
N − d(N)

]
, (2.4)

where

d(X) ≡ đ
(
1−

X

2

)
+X ; (2.5)

The theory is i) renormalizable, if it contains all vertices with δ
(α)
N ≤ d(N), and only those:

ω(G) does not increase when the number of vertices increases; ii) super-renormalizable, if it

contains all vertices with δ
(α)
N < d(N), and only those: ω(G) decreases when the number of

vertices increases; iii) strictly-renormalizable, if it contains all vertices with δ
(α)
N = d(N), and

only those: ω(G) does not depend on v
(α)
N ; iv) nonrenormalizable, if it contains some vertices

with δ
(α)
N > d(N): ω(G) increases when the number of those vertices increases.

The vertices with δ
(α)
N = d(N) are called “weighted marginal”, those with δ

(α)
N < d(N) are

called “weighted relevant” and those with δ
(α)
N > d(N) are called “weighted irrelevant”.
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By locality, δ
(α)
N cannot be negative. Moreover, polynomiality demands that there must exist

a bound Nmax on the number of legs that the vertices can contain. It is easy to show that these

requirements are fulfilled if and only if

đ > 2 (2.6)

and the bound is

Nmax =

[
2đ

đ− 2

]
, (2.7)

where [x] denotes the integral part of x. The existence of nontrivial interactions (Nmax ≥ 3)

requires đ ≤ 6, while the existence of nontrivial even interactions (Nmax ≥ 4) requires đ ≤ 4.

To complete the proof of renormalizability, observe that when δ
(α)
N ≤ d(N) the weighted degree

of divergence ω(G) of a graph G satisfies

ω(G) ≤ d(E). (2.8)

The inequality (2.6) ensures also that ω(G) decreases when the number of external legs increases.

Finally, since the vertices that subtract the overall divergences of G are of type (E,α) with δ
(α)
E =

ω(G), it is straightforward to check that the lagrangian contains all needed vertices. Indeed, (2.8)

coincides with the inequality satisfied by δ
(α)
E .

Now we prove that the renormalizable models just constructed are perturbatively unitary, in

particular that no higher time derivatives are present, both in the kinetic part and in the vertices,

and no higher time derivatives are generated by renormalization. Indeed, a lagrangian term with

higher time derivatives would have δ
(α)
N ≥ 2 for N > 2 or δ

(α)
2 > 2 (terms with N = 1 need not be

considered, since they cannot contain derivatives). This cannot happen in a renormalizable theory,

because (2.6) and δ
(α)
N ≤ d(N) imply δ

(α)
N ≤ 2 in general and δ

(α)
N < 2 for N > 2. In particular,

true vertices (N > 2) cannot contain any ∂̂-derivative at all, because invariance under the reduced

Lorentz and rotational symmetries of MD̂ and MD exclude also terms containing an odd number

of ∂̂’s or an odd number of ∂’s. Similar conclusions apply to the counterterms, because of (2.8).

Therefore, renormalization does not turn on higher time derivatives, as promised.

Weighted scale invariance. The strictly renormalizable models have the δ
(α)
N = d(N). Their

lagrangian has the form

L
(d̂,d)

=
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2 +

∑

(N,α)

λ(N,α)

N !Λ
(n−1)(N+d̂−d̂N/2)
L

[
∂
nd(N)

ϕN
]
α
. (2.9)

Here
[
∂
nd(N)

ϕN
]
α

denotes a basis of lagrangian terms constructed with N fields ϕ and nd(N)

∂-derivatives acting on them, contracted in all independent ways, and λ(N,α) are dimensionless

couplings.
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In the physical spacetime dimension d = d̂ + d (the continuation to complex dimensions will

be discussed later) the classical theories with lagrangians L
(d̂,d)

are invariant under the weighted

dilatation

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(đ/2−1), (2.10)

where Ω is a constant parameter. Each lagrangian term scales with the factor đ, compensated by

the scaling factor of the integration measure ddx of the action.

We call the models (2.9) homogeneous. Homogeneity is preserved by renormalization, namely

there exists a subtraction scheme in which no lagrangian terms of weighted degrees smaller than

d(N) are turned on by renormalization. This fact is evident using the dimensional-regularization

technique. Indeed, when δ
(α)
N = d(N), the equality in (2.8) holds, so ω(G) = d(E) = δ

(α)
E .

The weighted scale invariance (2.10) is anomalous at the quantum level. The weighted trace

anomaly and its relation with the renormalization group are studied in section 6.

Nonhomogeneous theories are those that contain both weighted marginal and weighted rel-

evant vertices. In these cases the weighted dilatation (2.10) is explicitly broken by the super-

renormalizable vertices, and dynamically broken by the anomaly.

Let us analyze some explicit examples, starting from the homogeneous models.

Homogeneous models. We begin with the ϕ4-theories. Setting Nmax = 4 in (2.7) we get

10

3
< đ ≤ 4. (2.11)

One solution with đ= 4 is the usual Lorentz-invariant ϕ4-theory in four dimensions (d̂ = d = 2,

n = 1). A simple Lorentz-violating solution is the model with n = 2 described by the lagrangian

L(2,4) =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(4ϕ)2 +
λ

4!Λ2
L

ϕ4. (2.12)

in six dimensions, with d̂ = 2, d = 4. The ϕ4-theories with n = 2 are used to describe the critical

behavior at Lifshitz points [11, 12].

It is clear that (2.11) admits infinitely many solutions for each value of đ. For example, given

a solution, such as (2.12), infinitely many others are obtained multiplying d and n by a common

integer factor. For đ= 4 we have the family of 2(n+ 1)-dimensional theories

L(2,2n) =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

λ

4!Λ
2(n−1)
L

ϕ4. (2.13)

In general, for every Lorentz-invariant renormalizable theory there exists an infinite family of

Lorentz-violating renormalizable theories.

7
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Let us now concentrate on four dimensions. The spacetime manifold can be split as (d̂, d) =

(0, 4), (1, 3), (2, 2), (3, 1), (4, 0). There is no nontrivial solution with d̂ = 0. Indeed, (2.7) implies

Nmax =

[
4

2− n

]
,

so n can only be 1, which gives back the Lorentz invariant ϕ4-theory. For d̂ = 1 we get

Nmax =

[
2 (n+ 3)

3− n

]
.

The only nontrivial solution is n = 2, which implies Nmax = 10 and

L(1,3) =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(4ϕ)2 +
λ6

6!Λ4
L

ϕ4(∂ϕ)2 +
λ10

10!Λ6
L

ϕ10. (2.14)

For d̂ = 2 we get Nmax = 2 (n+ 1): every integer n > 1 defines a nontrivial solution in this case.

The simplest example is (d̂, d) = (2, 2), n = 2. Listing all allowed vertices we get the theory

L(2,2) =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(
4ϕ
)2

+
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ6

6!Λ2
L

ϕ6. (2.15)

This model belongs to a family of đ= 3, (2 + n)-dimensional ϕ6-theories, whose lagrangian is

L(2,n) =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

λ6

6!Λ
2(n−1)
L

ϕ6, (2.16)

when n is odd and

L(2,n) =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

1

4!Λ
2(n−1)
L

∑

α

λα

[
∂
n
ϕ4
]
α
+

λ6

6!Λ
2(n−1)
L

ϕ6, (2.17)

when n is even. Observe that (2.16) includes the Lorentz-invariant ϕ6-theory in three spacetime

dimensions, which is the case n = 1.

For d̂ = 3 we get

Nmax =

[
2 (3n+ 1)

n+ 1

]
.

The solution with n = 2 has Nmax = 4. However, this solution is trivial, since its unique vertex

would have just one ∂-derivative. Instead, for every n ≥ 3, Nmax is equal to 5. For example, the

theory with n = 3 is

L(3,1) =
1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2
+

λ′3
3!Λ3

L

ϕ24
2
ϕ+

λ3
3!Λ3

L

ϕ
(
4ϕ
)2

+
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ5

5!ΛL
ϕ5,

which is clearly unstable. Imposing the symmetry ϕ→ −ϕ we have the modified ϕ4-theory

Leven(3,1) =
1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2
+

λ4
4!Λ2

L

ϕ2(∂ϕ)2,

which is stable for λ4 > 0. Finally, for d̂ = 4 we get again the Lorentz-invariant ϕ4-theory.

8
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Nonhomogeneous models. Nonhomogeneous theories can be obtained from the homogeneous

ones adding all super-renormalizable terms, which are those that satisfy the strict inequality

δ
(α)
N < d(N). For example, keeping the symmetry ϕ → −ϕ, the nonhomogeneous extension of

(2.12) is just

Lnh(2,4) =
1

2
(∂̂ϕ)2 +

a

2
(∂ϕ)2 +

m2

2
ϕ2 +

1

2Λ2
L

(4ϕ)2 +
λ

4!Λ2
L

ϕ4

and the one of (2.15) is

Lnh(2,2) =
1

2
(∂̂ϕ)2 +

a

2
(∂ϕ)2 +

m2

2
ϕ2 +

1

2Λ2
L

(
4ϕ
)2

+
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ′4
4!
ϕ4 +

λ6
6!Λ2

L

ϕ6.

Splitting the spacetime manifold into the product of more submanifolds. Instead of

splitting the spacetime manifold into two submanifolds, we can split it into the product of more

submanifolds, eventually one for each coordinate. This analysis covers the most general case. We

still need to distinguish a d̂-dimensional submanifold M
d̂

containing time from the di-dimensional

space submanifolds Mdi
, i = 1, . . . `, so we write

Md =M
d̂
⊗
∏̀

i=1

Mdi
.

Denote the space derivatives in the ith space subsector with ∂i and assume that they have weights

1/ni. Then the kinetic term of the lagrangian reads

Lkin =
1

2
(∂̂ϕ)2 +

1

2
ϕP2(∂i,ΛL)ϕ,

where P2(∂i,ΛL) is the most general weighted homogeneous polynomial of degree 2 in the spatial

derivatives, P2(λ
1/ni∂i,ΛL) = λ2P2(∂i,ΛL), invariant under rotations in the subspaces Mdi

. The

ΛL-dependence is arranged so that P2 has dimensionality 2. The previous analysis can be repeated

straightforwardly. It is easy to verify that the weighted power-counting criterion works as before

with

đ = d̂+
∑̀

i=1

di
ni
.

Edge renormalizability. By edge renormalizable theories we mean theories where renormal-

ization preserves the derivative structure of the lagrangian, but the powers of the fields are un-

restricted. With scalars and fermions, such theories contain arbitrary functions of the fields and

therefore infinitely many independent couplings. The notion of edge renormalizability is interest-

ing in the perspective to study gravity. Indeed, Einstein gravity is an example of theory where all

vertices have the same number of derivatives, but are nonpolynomial in the fluctuation around

9
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flat space. Yet, diffeomorphism invariance ensures that the number of invariants with a given

dimensionality in units of mass is finite. Therefore, in quantum gravity a polynomial derivative

structure is sufficient to reduce the arbitrariness to a finite set of independent couplings.

Edge renormalizable theories are those where ω(G) does not decrease when E increases, rather

it is independent of E. By formula (2.8) this means đ= 2 (Nmax = ∞), in which case ω(G) is

always equal to 2. Since đ= 2, d̂ can be either 0 or 1. The theories with d̂ = 0 contain higher

time derivatives, so they are not unitary. Thus we must take d̂ = 1. The homogeneous theory in

four dimensions has lagrangian

L = Lfree + LI, (2.18)

where

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2

and

LI = V1(ϕ)(∂̂ϕ)
2+ V2(ϕ)[(∂iϕ)

2]3 + V3(ϕ)4ϕ(∂iϕ)
2(∂jϕ)

2 + V4(ϕ)(∂i∂jϕ)(∂i∂j4ϕ)

+V5(ϕ)4
2
ϕ(∂iϕ)

2+ V6(ϕ)(4ϕ)
3 + V7(ϕ)(∂i4ϕ)

2 + V8(ϕ)(∂i∂j∂kϕ)
2 + V9(ϕ)4

3
ϕ, (2.19)

where the Vi’s are unspecified functions of ϕ with V1(ϕ) = O(ϕ), V4(ϕ), V7(ϕ), V8(ϕ), V9(ϕ) =

O(ϕ2).

The lagrangian of the most general nonhomogeneous theory is (2.18) with

Lfree =
1

2
(∂̂ϕ)2 −

1

2
ϕ

(
a4+ b

4
2

Λ2
L

+
4

3

Λ4
L

)
ϕ

and LI equal to (2.19) plus

V10(ϕ) + V11(ϕ)4ϕ+ V12(ϕ)4
2
ϕ+ V13(ϕ)(4ϕ)

2 + V14(ϕ)[(∂iϕ)
2]2,

with V11(ϕ), V12(ϕ) = O(ϕ
2), V13(ϕ) = O(ϕ).

3 Inclusion of fermions

In this section we classify the models of interacting fermions and scalars. We start from pure

fermionic theories, with quadratic lagrangian

Lfree = ψ∂̂/ψ +
1

Λn−1
L

ψ∂/
n
ψ,

where n is the maximal number of ∂-derivatives. The propagator

−ip̂/ + (−i)n p/ n

Λn−1
L

p̂2 + (p2)n

Λ2n−2
L

,

10
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is, in momentum space, a weighted function of degree −1. The loop-integral measure is, as usual,

a weighted measure of degree đ. For the purposes of renormalization, the kinetic terms with fewer

than n ∂-derivatives can be treated as vertices.

Label the vertices that have 2N ψ-ψ -legs by means of indices α and denote their weighted

degree with δ
(α)
N . Consider a diagram G with 2E external ψ-ψ -legs, constructed with v

(α)
N vertices

of type (N,α). Once the subdivergences have been subtracted away, its overall divergence is a

weighted polynomial of degree

ω(G) = đ− E(đ− 1) +
∑

(N,α)

v
(α)
N

[
δ
(α)
N − đ (1−N)−N

]

in the external momenta. Renormalizability demands

δ
(α)
N ≤ đ (1−N) +N ≡ dF (N). (3.1)

Polynomiality demands

đ > 1,

in which case the maximal number of external ψ-ψ -legs is

Nmax =

[
đ

đ− 1

]
.

Pure fermionic homogeneous models have strictly renormalizable vertices, namely those with

δ
(α)
N = dF (N). Their lagrangian has the form

L = ψ∂̂/ψ +
1

Λn−1
L

ψ∂/
n
ψ +

∑

(N,α)

λ(N,α)

(N !)2Λ
(n−1)(N−d̂−Nd̂)
L

[
∂
ndF (N)

ψ
N
ψN
]
α
.

Here
[
∂
ndF (N)

ψ
N
ψN
]
α

denotes a basis of lagrangian terms constructed with N fields ψ, N fields

ψ and ndF (N) ∂-derivatives, invariant under the reduced Lorentz symmetry. For simplicity, we

can assume also invariance under parities in both portions of spacetime.

Let us concentrate on four spacetime dimensions. The Lorentz split (1, 3) gives Nmax =

1 + [n/3], which admits infinitely many nontrivial solutions, beginning from n = 3. For example,

the n = 3 and n = 6 theories read

L(1,3) =ψ∂̂/ψ +
1

Λ2
L

ψ∆∂/ψ +
∑

α

λα
Λ2
L

[
ψ
2
ψ2
]
α
,

L′(1,3) =ψ∂̂/ψ +
1

Λ5
L

ψ ∆
3
ψ +

∑

α

λα
Λ5
L

[
∂
3
ψ
2
ψ2
]
α
+
∑

α

λ′α
Λ5
L

[
ψ
3
ψ3
]
α
,

respectively. The Lorentz splits (2, 2) and (3, 1) do not admit nontrivial solutions, since Nmax = 1

in those cases.

11



07
A

2
R

en
or

m
Now we study the models containing coupled scalars and fermions. It is important to note that

when different types of fields are involved, they must have the same n. We classify the vertices

with labels (Nψ, Nϕ, α), where 2Nψ is the number of ψ-ψ -legs, Nϕ is the number of ϕ-legs and α

is an extra label that distinguishes vertices with different structures. Call δ
(α)
(Nψ ,Nϕ)

the weighted

degree of the α-th vertex. Consider a diagram G with 2Eψ external ψ-ψ -legs, Eϕ external ϕ-legs

and v
(α)
(Nψ ,Nϕ)

vertices of type (Nψ , Nϕ, α). Once the subdivergences have been subtracted away,

the overall divergent part of G a is a weighted polynomial of degree

ω(G) = đ− Eψ(đ− 1)−
Eϕ
2

(đ− 2)

+
∑

(Nψ ,Nϕ,α)

v
(α)
(Nψ ,Nϕ)

[
δ
(α)
(Nψ ,Nϕ)

− đ
(
1−Nψ −

Nϕ

2

)
−Nψ −Nϕ

]
.

in the external momenta. Renormalizability demands

δ
(α)
(Nψ ,Nϕ)

≤ đ
(
1−Nψ −

Nϕ

2

)
+Nψ +Nϕ ≡ d(Nψ , Nϕ).

Because δ
(α)
(Nψ ,Nϕ)

is nonnegative, the numbers of fermionic and bosonic legs are bound by the

inequality

Nψ(đ− 1) +
Nϕ

2
(đ− 2) ≤ đ.

Polynomiality demands đ> 2.

The homogeneous models have a lagrangian of the form

L=ψ∂̂/ψ +
η

Λn−1
L

ψ∂/nψ +
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2

+
∑

(Nψ,Nϕ,α)

λ(Nψ ,Nϕ,α)

Nϕ!(Nψ!)2Λ
(n−1)(Nϕ+Nψ+d̂−d̂Nψ−d̂Nϕ/2)
L

[
∂
nd(Nψ ,Nϕ)ψ

NψψNψϕNϕ
]
α
.

In four dimensions the splitting (1, 3) has a unique nontrivial solution, which is the model (2.14)

coupled to fermions. It has n = 2 and its lagrangian reads

L(1,3) =ψ∂̂/ψ +
η

ΛL
ψ∆ψ +

1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∆ϕ)2 +
λ2
2Λ2

L

ϕ2(ψ
←→
∂/ ψ) +

λ′2
2Λ2

L

ϕ2∂ · (ψγψ)

+
λ4

4!Λ3
L

ϕ4ψψ +
λ6

6!Λ4
L

ϕ4(∂ϕ)2 +
λ10

10!Λ6
L

ϕ10.

The splitting (2, 2) admits infinitely many solutions. The simplest one is the theory with

n = 2, symmetric under ϕ↔ −ϕ, that couples (2.15) to fermions:

L(2,2) = ψ∂̂/ψ +
η

ΛL
ψ∆ψ +

1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∆ϕ)2 +
λ2
2ΛL

ϕ2ψψ +
λ4

4!Λ2
L

ϕ2(∂ϕ)2 +
λ6

6!Λ2
L

ϕ6,

The splitting (3, 1) admits, again, infinitely many solutions.
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4 Renormalization

In this section we study the structure of Feynman diagrams, their divergences and subdivergences,

and the locality of counterterms. For definiteness, we work with scalar fields, but the conclusions

are general.

One-loop. Consider the most general one-loop Feynman diagram G, with E external legs, I

internal legs and v
(α)
N vertices of type (N,α) and weighted degree δ

(α)
N . Collectively denote the

external momenta by k. The divergent part of G can be calculated expanding the integral in

powers of k. We obtain a linear combination of contributions of the form

I
(I,n)
µ1···µ2r |j1···j2s

k̂ν1 · · · k̂νu ki1 · · · kiv , (4.1)

where

I
(I,n)
µ1···µ2r |j1···j2s

=

∫
dD̂p̂

(2π)D̂

∫
dDp

(2π)D

p̂µ1 · · · p̂µ2r pj1 · · · pj2s(
p̂2 +

(
p2
)n
/Λ

2(n−1)
L +m2

)I .

To avoid infrared problems we insert a mass m in the denominators. For the purposes of renor-

malization, it is not necessary to think of m as the real mass. It can be considered as a fictitious

parameter, introduced to calculate the divergent part of the integral and set to zero afterwards.

The real mass, as well as the other parameters am of (2.2), can be treated perturbatively, so they

are included in the set of “vertices”.

From the weighted power-counting analysis of section 2 we know that the numerator of (4.1),

namely

p̂µ1 · · · p̂µ2r pj1 · · · pj2s k̂ν1 · · · k̂νu ki1 · · · kiv ,

is a weighted monomial Pq,n(p̂, k̂; p, k) of weight 1/n and degree

q = u+ 2r +
v

n
+

2s

n
=
∑

(N,α)

δ
(α)
N v

(α)
N .

At one loop the number of vertices equals the number of propagators. Using (2.3) and δ
(α)
N ≤ d(N)

we get

u+
v

n
≤ 2

(
I − r −

s

n

)
+ E

(
1−

đ
2

)
. (4.2)

By symmetric integration, we can write

I
(I,n)
µ1···µ2r |j1···j2s

= δ
(1)
µ1···µ2rδ

(2)
j1···j2s

I(I,n)r,s , I(I,n)r,s =

∫
dD̂p̂

(2π)D̂

∫
dDp

(2π)D

(
p̂2
)r (

p2
)s

(
p̂2 +

(
p2
)n
/Λ

2(n−1)
L +m2

)I ,

13
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where δ
(1)
µ1···µ2r and δ

(2)
j1···j2s

are appropriately normalized completely symmetric tensors constructed

with the Kronecker tensors of M D̂ and MD, respectively. Performing the change of variables

pi = p′i

(
Λ2
L

p′2

)(n−1)/(2n)

, (4.3)

the integral I
(I,n)
r,s can be calculated using the standard formulas of the dimensional-regularization

technique. We obtain

I(I,n)r,s =
1

n
Λ
(2s+D)(n−1)/n
L

∫
dD̂p̂

(2π)D̂

∫
dDp′

(2π)D
(p̂2)r(p′2)(2s+D−nD)/(2n)

(p̂2 + p′2 +m2)I

=
Λ
(2s+D)(n−1)/n
L (m2)r−I+s/n+Ð/2Γ

(
2s+D
2n

)
Γ
(
2r+D̂

2

)
Γ
(
I − r − s

n −
Ð
2

)

n(4π)D/2Γ(D̂/2)Γ
(
D/2

)
Γ (I)

.

The factor 1/n is due to the Jacobian determinant of the transformation (4.3). The singularities

occur for

I ≤ r +
s

n
+

đ
2
. (4.4)

Combining this inequality with (4.2) we find that the divergent contributions satisfy

u+
v

n
≤ đ + E

(
1−

đ
2

)
= d(E). (4.5)

The counterterms are a Pu+v/n,n(k̂, k):

1

ε
k̂ν1 · · · k̂νu ki1 · · · kiv , where ε = đ−Ð = ε1 +

ε2
n
.

Thus (4.5) ensures that the divergent terms can be subtracted away renormalizing the fields

and couplings of the initial lagrangian. Observe that while the poles are proportional to 1/ε, the

residues of the poles can depend on ε1 and ε2 separately. We know that taking a sufficient number

of derivatives with respect to the masses, the external momenta and the parameters am of (2.2),

the integral becomes convergent. Therefore, the finite parts are regular in the limits ε1, ε2 → 0,

which can be safely taken in any preferred order. Objects such as ε1/ε and ε2/ε multiply only local

terms, so they parametrize different scheme choices and never enter the physical quantities. These

observations generalize immediately to all orders. We define the minimal subtraction schemes as

the schemes where

ε1 = αε, ε2 = n(1− α)ε,

with α=constant, and only the pure poles in ε are subtracted away, with no finite contributions.
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Overall divergences and subdivergences. Before considering Lorentz violating theories to

all orders in the loop expansion it is convenient to briefly review the usual classification of diver-

gences and the proof of locality of counterterms [17] in Lorentz symmetric theories. Consider the

L-loop integral

I(k) =

∫ L∏

i=1

dDp(i)

(2π)D
Q(p(1), . . . , p(L); k)

with Lorentz invariant propagators 1/(p2 + m2), where k denotes the external momenta. The

ultraviolet behavior of I(k) is studied letting any (sub)set of the momenta p(1), . . . , p(L) tend to

infinity with the same velocity. Proper subsets of the momenta test the presence of subdivergences,

while the whole set tests the presence of overall divergences. i) When any subconvergence fails,

counterterms corresponding to the divergent subdiagrams have to be included to subtract the

subdivergences. ii) Once all subdivergences are removed, the subtracted integral Isub(k) can

still be overall divergent. Taking an appropriate number M of derivatives with respect to the

external momenta k the integral ∂Mk Isub(k) becomes overall convergent. This proves the locality

of counterterms.

The overlapping divergences can be tested sending momenta to infinity with different velocities.

For example, rescale p1, . . . , pL as λp1, . . . , λpl, λ
2pl+1, . . . , λ

2pL. This test, however, is already

covered by the previous ones, since there is always a (sub)set sfast of momenta tending to infinity

with maximal velocity. In the example just given, sfast = (pl+1, . . . , pL). The other momenta

sslow grow slower, so they can be considered fixed in the first analysis and taken to infinity at a

second stage. Weinberg’s theorem [18] ensures that when sfast tends to infinity the behavior of

the relevant subintegral is governed by power counting and can generate logarithmic corrections

depending on the momenta of sslow. Then, when sslow tends to infinity the behavior of the integral

over sslow is still governed by power counting, because the corrections due to the integrals over

sfast do not affect the powers of the momenta sslow. Thus the power-counting analysis done in

steps i) and ii) suffices.

Now we generalize the analysis to Lorentz violating theories. We say that the components p̂

and p of each momentum are rescaled with the same “weighted velocity” when

p̂→ λp̂, p→ λ1/np.

Step i) is modified studying the convergence when any subset of momenta tend to infinity with the

same weighted velocity. Whenever a subconvergence fails the counterterms associated with the

divergent subdiagrams have to be included. Once the subdivergences are subtracted away, step

ii) consists of taking an appropriate number of “weighted derivatives” (see below) with respect to

the external momenta, to eliminate the overall divergences. It is easy to check that this procedure

automatically takes care of the overlapping divergences.
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Weighted Taylor expansion. Every Taylor expansion

f(k̂, k) =

∞∑

u=0

∞∑

v=0

fν1···νu,i1···iv
u!v!

k̂ν1 · · · k̂νu ki1 · · · kiv

can be rearranged into a “weighted Taylor expansion”

f(k̂, k) =

∞∑

`=0

1

`!
f (`)(k̂, k),

where

f (`)(k̂, k) =

[`/n]∑

u=0

`!

u!(`− nu)!
fν1···νu,i1···i`−nu k̂ν1 · · · k̂νu ki1 · · · ki`−nu

is a weighted homogeneous polynomial of degree `/n:

f (`)(λk̂, λ1/nk) = λ`/nf (`)(k̂, k).

The `-th weighted derivatives with weight 1/n are the coefficients fν1···νu,i1···i`−nu .

The weighted Taylor expansion is useful to subtract the overall divergences. The overall-

subtracted version of an integral whose weighted degree of divergence is ω reads

∫
dLD̂p̂

(2π)LD̂

dLDp

(2π)LD

[
Q(p̂, p; k̂, k)−

nω∑

`=0

1

`!
Q(`)(p̂, p; k̂, k)

]
,

where Q(`) denotes the `-th homogeneous polynomial of the weighted Taylor expansion of Q in

k̂, k.

Subtraction algorithm. Consider an L-loop diagram with V vertices and I propagators. The

integrand, which we denote with QG, is a ratio of weighted polynomials and has degree equal to

dQ ≡
∑

(N,α) δ
(α)
N v

(α)
N − 2I. The integral I is a weighted function of degree dI = dQ+ÐL. It has

the form

I =

∫
dLD̂p̂

(2π)LD̂

∫
dLDp

(2π)LD
QG(p̂, p, k), (4.6)

where p̂ and p collectively denote the components of the momenta circulating in the loops, while

k = (k̂, k) collectively denotes the external momenta. The overall degree of divergence of I is

ω(G) = dQ+đL.

The subtraction of divergences can be arranged according to the following table:

QG(p̂, p; k̂, k) −
∑

γ∈ΓQγ(p̂, p; k̂, k)

−
∑nω(G)

`=0
1
`!Q

(`)
G (p̂, p; k̂, k)

∑nω(G)
`=0

1
`!

∑
γ∈ΓQ

(`)
γ (p̂, p; k̂, k)

(4.7)
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Here Γ denotes the set of divergent subdiagrams γ of the diagram G. The rational function Qγ is

obtained replacing the subintegrand with the appropriate, truncated, weighted Taylor expansion

in the external momenta of γ. In the arrangement of (4.7) subdivergences are subtracted row-wise.

Overall divergences are subtracted column-wise.

A potential caveat comes from certain “extra subdivergences”,those that occur when a subdi-

agram γ′ is convergent in QG, but becomes divergent in one of the Qγ ’s. Then γ′ does not belong

to Γ, so its subdivergence is not subtracted row-wise. Nevertheless, it is easy to show that the

extra subdivergences are automatically subtracted column-wise in (4.7). Details and an explicit

example are given in appendix A.

Thus, once the subdivergences have been subtracted away, the divergent part of every Feynman

diagram is a weighted polynomial of degree ω(G) (second row of (4.7)) and can be removed

renormalizing the lagrangian (2.18).

5 Renormalization structure and renormalization group

In this section we study the renormalization group. We illustrate it first in the đ= 4 models

(2.13). For the reasons that we explain below, it is convenient to parametrize the bare lagrangian

as

L(2,2n)B =
1

2
(∂̂ϕB)

2 +
1

2Λ
2(n−1)
LB

(∂
n
ϕB)

2 +
λB

4!Λ
(n−1)(2−ε2/n)
LB

ϕ4
B (5.1)

with

ϕB = Z1/2
ϕ ϕ, ΛLB = ZΛΛL, λB = λµεZλ, ε ≡ ε1 +

ε2
n
. (5.2)

Observe that Ð= 4−ε. The weighted scale invariance (2.10) can be extended to a transformation

that rescales also µ:

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(Ð−2)/2, µ→ µeΩ. (5.3)

The invariance under this transformation is not a symmetry. It just tells us that at the quantum

level the weighted scale invariance (2.10) is equivalent to a µ-rescaling. What is important in

(2.10) and (5.3) is that ΛL is unmodified. Because of (5.3), every renormalization constant in

(5.2) is just a function of λ (otherwise it could also depend on evanescent powers of the ratio

µ/ΛL). Thus, in the minimal subtraction scheme the λ-beta function has the usual form

µ
dλ

dµ
= β̂λ = −ελ+ β(λ).

The finiteness of β̂λ proves that all poles contained in Zλ are inverse powers of ε.

In more detail, let us consider the contribution of a graph G with E external legs, I propa-

gators and V vertices to the generating functional of one-particle irreducible diagrams. Such a
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contribution has the schematic form

I =

∫
dDx

λV µV ε

Λ
V (n−1)(2−ε2/n)
L

GϕE ,

where G denotes the value of the Green function. The dimensionality of G in units of mass is

[G] = D

(
V −

E

2
+ 1

)
+ E − 4V,

while its weighted degree is

ω(G) = [G]− δ[G] = 4− E +∆ω(G),

where

∆ω(G) = −ε

(
V −

E

2
+ 1

)
, δ[G] =

(
2−

ε2
n

)
(n− 1)

(
V −

E

2
+ 1

)
.

Recalling that I is invariant under the weighted scale transformation (5.3), we find that G trans-

forms as

G→ eΩω(G)G. (5.4)

Once the subdivergences have been inductively subtracted away, the divergent part Gdiv is a

weighted polynomial of degree 4−E in the external momenta. Matching the dimensionality and

the weighted rescaling (5.4) we find

Gdiv = P4−E,n(∂̂, ∂; ΛL)Λ
δ[G]
L µ∆ω(G),

where P4−E,n(∂̂, ∂; ΛL) is a homogeneous weighted polynomial of degree 4−E and dimensionality

equal to its degree. The corresponding lagrangian counterterm reads

Idiv = −

∫
dDx

(
λµε

Λ
(n−1)(2−ε2/n)
L

)V
µ∆ω(G)Λ

δ[G]
L [P4−E,n(∂̂, ∂; ΛL)]ϕ

E ,

where [P ] means that the derivatives contained in P act on the scalar legs ϕE as appropriate. In

particular, summing up all contributions for E = 4, we get

−

∫
dDx

λµε

Λ
(n−1)(2−ε2/n)
L

ϕ4
∞∑

L=1

cLλ
L,

where cL are divergent constants. Thus the renormalization constant of λ is a power series in λ,

Zλ = 1−

∞∑

L=1

cLλ
L,

18



07
A

2
R

en
or

m
with no spurious dependence on µ/ΛL. The same conclusion holds for the other renormalization

constants. We have

µ
dΛL
dµ

= ηLΛL, ηL(λ) = −
d lnZΛ

d lnµ
.

The Callan-Symanzik equation has the same form as usual. Calling

Gk(x̂1, · · · , x̂k;x1, · · · , xk;λ,ΛL, µ) = 〈ϕ(x1) · · ·ϕ(xk)〉 ,

we have
(
µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηLΛL

∂

∂ΛL
+ kγϕ

)
Gk(x̂1, · · · , x̂k;x1, · · · , xk;λ,ΛL, µ) = 0. (5.5)

The equation can be immediately integrated to give

Gk(x̂1, · · · , x̂k;x1, · · · , xk;λ,ΛL, ξµ) = z−k(t)Gk(x̂1, · · · , x̂k;x1, · · · , xk;λ(t),ΛL(t), µ),

where t = ln ξ and

z(t) = exp

(∫ t

0
γϕ(λ(t

′))dt′
)
,

dλ(t)

dt
= −β̂λ(λ(t)), ΛL(t) = ΛL exp

(
−

∫ t

0
ηL(λ(t

′))dt′
)
,

with λ(0) = λ. Now the renormalization-group flow specifies how the correlation functions changes

under a weighted overall rescaling. Indeed, the weighted scale invariance (5.3)-(5.4) tells us that

Gk(x̂1, · · · , x̂k;x1, · · · , xk;λ,ΛL, ξµ) = ξk(Ð−2)/2Gk(ξx̂1, · · · , ξx̂k; ξ
1/nx1, · · · , ξ

1/nxk;λ,ΛL, µ).

A one-loop calculation for the models (2.13) gives

β̂λ = −ελ+
3λ2

(4π)n+1n!
+O(λ3), γϕ = O(λ2), ηL = O(λ2),

so these models are IR free. Only the beta function has a nonvanishing one-loop contribution.

Indeed, using the dimensional-regularization technique tadpoles vanish in homogeneous models,

so γϕ and ηL start from two loops.

Let us now consider the model (2.15). The bare lagrangian reads

L(2,2)B =
1

2
(∂̂ϕB)

2 +
1

2Λ2
LB

(
4ϕB

)2
+

λ4B

4!Λ
2−ε2/2
LB

ϕ2
B(∂ϕB)

2 +
λ6B

6!Λ2−ε2
LB

ϕ6
B,

where

ϕB = Z1/2
ϕ ϕ, ΛLB = ZΛΛL, λ4B = µε (λ4 +∆4) , λ6B = µ2ε (λ6 +∆6) , ε ≡ ε1 +

ε2
2
.

The theory is invariant under the scale transformation (5.3) with n = 2. At one-loop we find

Zϕ = 1, ZΛ = 1 and

∆4 =
5λ24

2(12π)2ε
, ∆6 =

5λ4λ6
(8π)2ε

−
5λ34

(48π)2ε
,
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so the beta functions read

β̂4 = −ελ4 +
5λ24

2(12π)2
, β̂6 = −2ελ6 +

5λ4λ6
(8π)2

−
5λ34

(48π)2
.

The asymptotic solutions of the RG flow equations are

λ4 ∼
2(12π)2

5t
, λ6 ∼

1

20
λ24,

where t = ln |x|µ and |x| is a typical weighted scale of the process. Since λ4 and λ6 must be

nonnegative, the theory is IR free.

6 Weighted trace anomaly

The weighted scale invariance (2.10) of the homogeneous models can be anomalous due to the

radiative corrections. In this section we calculate the weighted trace anomaly, following [19]. For

definiteness, we work with the model (2.12), but the discussion generalizes immediately to the

other models.

Weighted dilatation. In the case of the model (2.12), write the lagrangian as L(ϕ, ∂̂µϕ,4ϕ).

The infinitesimal version of the transformation (2.10) reads

δϕ = Ω

(
1 + x̂ · ∂̂ +

1

2
x · ∂

)
ϕ ≡ ΩĎϕ,

with Ω� 1. The conserved Noether current Jµ = (Ĵµ, J
µ
) is given by

Ĵµ = −x̂µL+
∂L

∂(∂̂µϕ)
Ďϕ, J

µ
= −

1

2
xµL+

∂L

∂(4ϕ)

←→
∂
µ
Ďϕ.

We continue the spacetime dimensions to complex values as explained in section 1. The continued

transformation δϕ′ and the continued current J ′µ are obtained replacing Ďϕ in δϕ and Jµ with

Ď
′
ϕ =

(
Ð
2
− 1 + x̂ · ∂̂ +

1

2
x · ∂

)
ϕ (6.1)

(see (5.3)), where Ð= 4−ε. At the bare level, the anomaly of (6.1) is expressed by the divergence

of J ′µ. We find

∂µJ
′µ = −ε

λBϕ
4
B

4!Λ2
BL

. (6.2)
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Improved energy-momentum tensor and its weighted trace. The anomaly of the weighted

dilatation is encoded also in the energy-momentum tensor, precisely in its “weighted trace”. Let

us start from the energy-momentum tensor given by the Noether method. For the model (2.12)

we have

Tµν =
∂L

∂(∂̂µϕ)
∂νϕ+

∂L

∂(4ϕ)

←→
∂µ∂νϕ− δµνL. (6.3)

This tensor is not symmetric, but conserved: it is easy to check that ∂µTµν = 0, using the field

equations. Next, define the improved energy-momentum tensor

T̃µν = ∂̂µϕ∂νϕ−
1

Λ2
L

∂νϕ
←→
∂µ4ϕ− δµνL −

Ð− 2

4(D̂ − 1)
π̂µνϕ

2 +
3Ð− 2DÐ + 3D − 5

(D − 1)Λ2
L

πµν
(
ϕ4ϕ

)

+
3− 2Ð

2(D − 1)Λ2
L

πµν
(
∂αϕ

)2
+

3− 2Ð
Λ2
L

πµα (ϕπανϕ) . (6.4)

where π̂µν = ∂̂µ∂̂ν − δ̂µν ∂̂
2 and πµν = ∂µ∂ν − δµν∂

2
. The first three terms of (6.4) correspond

to the Noether tensor (6.3), while the rest collects the improvement terms, identically conserved.

Define the weighted trace

Θ ≡ T̃µ̂µ̂ +
1

n
T̃µµ.

Using the field equations, it is easy to show that T̃µν is conserved and that its weighted trace

Θ vanishes in the physical spacetime dimension d = d̂ + d. Moreover, T̃µν is conserved also in

the continued spacetime dimension. The coefficients of the improvement terms are chosen so

that in the free-field limit Θ vanishes also in the continued dimension D = D̂ + D. Finally, it

is straightforward to check that the weighted trace Θ coincides with the divergence (6.2) of the

current J ′µ.

Anomaly. We need to write Θ in terms of renormalized operators. When we differentiate a

renormalized correlation function with respect to λ or ΛL we obtain a renormalized correlation

function containing additional insertions of −∂S/∂λ or −∂S/∂ΛL, respectively. Thus, −∂S/∂λ

and −∂S/∂ΛL are renormalized operators. Following a standard procedure [19] we can find which

operators O they are the renormalized versions of. In the minimal subtraction scheme, it is

sufficient to express the renormalized operators as bare operators OB plus poles. Schematically,

finite = OB + poles ⇒ finite = [O].

where [O] denotes the renormalized version of the operator O. We find

∂S

∂λ
=finite =

1

β̂λ

(
γϕ[Eϕ]− ηLΛL

∂S

∂ΛL
− ε

λB
4!Λ2

BL

∫
ϕ4
B

)
=

µε

4!Λ2
L

∫
[ϕ4],

−
1

2
ΛL

∂S

∂ΛL
=finite =

1

2Λ2
BL

∫
(4ϕB)

2 +
λB

4!Λ2
BL

∫
ϕ4
B =

1

2Λ2
L

∫
[(4ϕ)2] +

λµε

4!Λ2
L

∫
[ϕ4],
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where [Eϕ] =

∫
ϕ(δS/δϕ) is the operator that counts the number of ϕ-insertions. Thus,

∫
Θ = −

∫
ε
λBϕ

4
B

4!Λ2
BL

=
(β̂λ − 2ληL)µ

ε

4!Λ2
L

∫
[ϕ4]−

ηL
Λ2
L

∫
[(4ϕ)2]− γϕ[Eϕ].

The result agrees with the Callan-Symanzik equation (5.5), which can be expressed as

〈∫
Θ ϕ(x1) · · ·ϕ(xk)

〉
= µ

∂

∂µ
〈ϕ(x1) · · ·ϕ(xk)〉 .

Indeed, ∫
Θ = −µ

∂S

∂µ
= β̂λ

∂S

∂λ
+ ηLΛL

∂S

∂ΛL
− γϕ[Eϕ].

7 Nonrelativistic theories

Nonrelativistic theories can be studied along the same lines. The action contains only a single

time derivative ∂̂,

L = ϕ

(
∂̂ +

4

2m
+ ξ
4

2

m2
+ · · ·

)
ϕ+ ζϕ24ϕ2 + · · ·+ λ(ϕϕ)2 + · · ·

so the theory is more divergent. The dimensional-regularization is not easy to use, since there

is no simple way to continue the single-derivative term ϕ∂̂ϕ to complex dimensions. Thus we

assume an ordinary cut-off regularization.

The propagator is defined by the term ϕ∂̂ϕ plus the lagrangian quadratic term with the highest

number of ∂-derivatives, say 2n,

Lfree = ϕ

(
∂̂ +

∂
2n

Λ2n−1
L

)
ϕ.

For the purposes of renormalization, the other quadratic terms, if present, can be treated per-

turbatively, as explained in section 2. Thus the nonrelativistic propagator is the inverse of a ho-

mogeneous weighted polynomial of degree 1 and weight 1/n. The integral measure has weighted

degree đ= 1+(d− 1)/(2n). A Feynman diagram G with E total external legs, I propagators and

v
(α)
N N -leg vertices of weighted degrees δ

(α)
N is a weighted function of degree

ω(G) = Lđ− I +
∑

(N,α)

δ
(α)
N v

(α)
N .

Formulas (2.3) still hold. We have

ω(G) = đ−
E

2
(đ− 1) +

∑

(N,α)

[
δ
(α)
N +

(
N

2
− 1

)
đ−

N

2

]
v
(α)
N .
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Renormalizable theories are those that contain the vertices with

δ
(α)
N ≤

N

2
−

(
N

2
− 1

)
đ. (7.1)

Strictly renormalizable theories are those that have

δ
(α)
N =

N

2
−

(
N

2
− 1

)
đ.

Polynomiality requires now

đ > 1,

which ensures also that ω(G) decreases when the number of external legs increases. The maximal

number of legs is

Nmax =

[
2đ

đ− 1

]
. (7.2)

It is straightforward to check that E = N implies

ω(G) ≤ đ−
N

2
(đ− 1) ,

so by (7.1) the type of vertex that subtracts the divergence of G is already present in the la-

grangian, which proves renormalizability. No terms with more than one time derivative are turned

on by renormalization.

Let us now see some examples of homogeneous models, beginning from the ϕ4-theories. Setting

Nmax = 4 in (7.2) we get
5

3
< đ ≤ 2.

For đ= 2 we have d = 2n+ 1 and the family of odd-dimensional theories

L(1,2n) = ϕi∂̂ϕ+
1

Λ2n−1
L

ϕ∂
2n
ϕ+

λ

4Λ2n−1
L

(ϕϕ)2. (7.3)

Setting Nmax = 6 we have 7/5 <đ≤ 3/2. For đ= 3/2 we have d = n+ 1. If n is odd we have the

family

L(1,n) = ϕi∂̂ϕ+
1

Λ2n−1
L

ϕ∂
2n
ϕ+

λ6

36Λ2n−1
L

(ϕϕ)3.

In particular, we see that there exist four-dimensional (n = 3) nonrelativistic renormalizable

ϕ6-theories. If n is even we must include additional vertices,

L(1,n) = ϕi∂̂ϕ+
1

Λ2n−1
L

ϕ∂
2n
ϕ+

∑

β

λβ

4Λ2n−1
L

[∂
n
ϕ2ϕ2]β +

λ6

36Λ2n−1
L

(ϕϕ)3.
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8 Conclusions

In this paper we have classified the unitary Lorentz violating renormalizable quantum field theories

that can be obtained improving the UV behavior of propagators with the help of higher space

derivatives. The removal of divergences is governed by a weighted power-counting criterion. If

the lagrangian has an appropriate form, time derivatives are “protected”, in the sense that no

higher time derivatives are turned on by renormalization. The so-defined theories are unitarity,

but have modified dispersion relations. We have studied their main properties, including the

renormalization group flow and the weighted trace anomaly.

Natural extensions of this work are those that aim to include gauge fields and gravity. Pos-

sible applications range from high-energy physics, effective field theory, nuclear physics and the

theory of critical phenomena. In the high-energy physics domain, it would be interesting to

explore the work-hypothesis that Lorentz invariance is violated at very high energies, to define

the ultraviolet limit of quantum gravity, or study new types of Lorentz invariant extensions of

the Standard Model. It would also be interesting to embed the weighted scale invariance into a

“weighted conformal group”, generalizing the Galilean conformal group that characterizes a class

of nonrelativistic theories [20].

Appendix A: extra subdivergences

In this appendix we give more details on the extra subdivergences mentioned in section 4. By

construction, every row of table (4.7) is free of “ordinary” subdivergences, namely those originated

by the subdiagrams γ. Every column is free of overall divergences. Extra subdivergences are

those that occur when a subdiagram γ′ is convergent in QG, but becomes divergent in one of the

Qγ ’s, after replacing γ with its counterterms. Here we prove that the extra subdivergences are

automatically subtracted column-wise.

It is useful to have an explicit example in mind, such as the two-loop diagram depicted in fig.

1, in the four dimensional ϕ4-theory. The diagram is the p-q integral of

QG =
1

(p2 +m2) [(p− k)2 +m2]

1

(q2 +m2) [(q + p+ k′)2 +m2]
.

The p-integral is convergent, the q-integral is not. The q-subdivergence is subtracted by

−Qγ = −
1

(p2 +m2) [(p− k)2 +m2]

1

(q2 +m2)2
. (A.1)

In this expression, however, the p-integral is divergent. This divergence is what we call an extra

subdivergence. The table reads

QG −Qγ

− 1
(p2+m2)2

1
(q2+m2)[(q+p)2+m2]

+ 1
(p2+m2)2

1
(q2+m2)2

(A.2)
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Figure 1: Simple example of diagram that generates an extra subdivergence

In the general case, assume that the subdiagram γ contains l loops and that Qγ contains

some extra subdivergences. The extra subdivergences can be overall or not. We call them overall

if they arise letting all of the remaining L − l loop momenta tend to infinity. They are not

overall if they arise letting only a subset of the remaining L − l loop momenta tend to infinity.

Proceeding inductively, we can assume that the non-overall extra subdivergences have already

been subtracted away. Thus, we need to consider only the overall extra subdivergences. It is not

difficult to see that they are subtracted column-wise in (4.7). Indeed, as in (A.1), the integrands

that generate extra overall subdivergences factorize (or split into a sum of terms each of which

factorizes): one factor is responsible for the extra subdivergence (see the first factor of −Qγ in

(A.1)), while the other factor is the γ-counterterm (see the second factor of −Qγ in (A.1)). The

second factor is the same throughout the column. Thus, the column subtracts away the overall

divergence of the first factor, which is precisely the extra subdivergence. Recapitulating, the rows

are free of ordinary subdivergences and the columns are free of extra subdivergences and overall

divergences. Thus the table (4.7) is convergent. In the example (A.2), it is clear that the column

of −Qγ is p-convergent.

Appendix B: Euclidean propagators

Let us examine some propagators
1

p̂2 + (p2)n

Λ2n−2
L

in coordinate space. The Euclidean (2,2)-propagator in four dimensions with n = 2 reads

G(2,2)(x̂, x,ΛL) =
ΛL
16|x̂|

[
I0(ΛLx

2/4|x̂|)− SL0(ΛLx
2/4|x̂|)

]
,

where I denotes the modified Bessel function of the first kind, while SL denotes the modified

Struve function. For |x̂| � ΛLx
2 and |x̂| � ΛLx

2 we have

G(2,2) ∼
ΛL
16|x̂|

and G(2,2) ∼
1

2πx2
,

respectively.
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Instead, the Euclidean (1,3)-propagator with n = 2 reads

G(1,3)(x̂, x,ΛL) =
ΛL
8π|x|

Erf

(√
ΛLx2

4|x̂|

)
.

In the two limits considered above we have the behaviors

G(1,3) ∼
Λ
3/2
L

8π3/2|x̂|1/2
and G(1,3) ∼

ΛL
8π|x|

,

respectively.
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