Recent theorems

Recent Papers

Renormalization-group invariance

We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem.


Eur. Phys. J. C 73 (2013) 2508 | DOI: 10.1140/epjc/s10052-013-2508-5

arXiv:1301.7577 [hep-th]

Search this site

Support Renormalization

If you want to support you can spread the word on social media or make a small donation


14B1 D. Anselmi

Read in flash format


Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)