Recent theorems

Recent Papers

Quantum field theory

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Contents:

Preface

1. Functional integral

  • 1.1 Path integral
    • Schroedinger equation
    • Free particle
  • 1.2 Free field theory
  • 1.3 Perturbative expansion
    • Feynman rules
  • 1.4 Generating functionals, Schwinger-Dyson equations
  • 1.5 Advanced generating functionals
  • 1.6 Massive vector fields
  • 1.7 Fermions

2. Renormalization

  • 2.1 Dimensional regularization
    • 2.1.1 Limits and other operations in $D$ dimensions
    • 2.1.2 Functional integration measure
    • 2.1.3 Dimensional regularization for vectors and fermions
  • 2.2 Divergences and counterterms
  • 2.3 Renormalization to all orders
  • 2.4 Locality of counterterms
  • 2.5 Power counting
  • 2.6 Renormalizable theories
  • 2.7 Composite fields
  • 2.8 Maximum poles of diagrams
  • 2.9 Subtraction prescription
  • 2.10 Regularization prescription
  • 2.11 Comments about the dimensional regularization
  • 2.12 About the series resummation

3. Renormalization group

  • 3.1 The Callan-Symanzik equation
  • 3.2 Finiteness of the beta function and the anomalous dimensions
  • 3.3 Fixed points of the RG flow
  • 3.4 Scheme (in)dependence
  • 3.5 A deeper look into the renormalization group

4. Gauge symmetry

  • 4.1 Abelian gauge symmetry
  • 4.2 Gauge fixing
  • 4.3 Non-Abelian global symmetry
  • 4.4 Non-Abelian gauge symmetry

5. Canonical gauge formalism

  • 5.1 General idea behind the canonical gauge formalism
  • 5.2 Systematics of the canonical gauge formalism
  • 5.3 Canonical transformations
  • 5.4 Gauge fixing
  • 5.5 Generating functionals
  • 5.6 Ward identities

6. Quantum electrodynamics

  • 6.1 Ward identities
  • 6.2 Renormalizability of QED to all orders

7 Non-Abelian gauge field theories

  • 7.1 Renormalizability of non-Abelian gauge theories to all orders
    • Raw subtraction

A. Notation and useful formulas

Read in flash format

PDF

We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the $\gamma $ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.

PDF

Phys. Rev. D 89 (2014) 125024 | DOI: 10.1103/PhysRevD.89.125024

arXiv: 1405.3110 [hep-th]

We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

PDF

Eur. Phys. J. C 74 (2014) 3083 | DOI: 10.1140/epjc/s10052-014-3083-0

arXiv: 1402.6453 [hep-th]

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

PDF

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

arXiv: 1311.2704 [hep-th]

We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem.

PDF

Eur. Phys. J. C 73 (2013) 2508 | DOI: 10.1140/epjc/s10052-013-2508-5

arXiv:1301.7577 [hep-th]

We develop a general field-covariant approach to quantum gauge theories. Extending the usual set of integrated fields and external sources to “proper” fields and sources, which include partners of the composite fields, we define the master functional $\Omega$, which collects one-particle irreducible diagrams and upgrades the usual $\Gamma$-functional in several respects. The functional $\Omega$ is determined from its classical limit applying the usual diagrammatic rules to the proper fields. Moreover, it behaves as a scalar under the most general perturbative field redefinitions, which can be expressed as linear transformations of the proper fields. We extend the Batalin-Vilkovisky formalism and the master equation. The master functional satisfies the extended master equation and behaves as a scalar under canonical transformations. The most general perturbative field redefinitions and changes of gauge-fixing can be encoded in proper canonical transformations, which are linear and do not mix integrated fields and external sources. Therefore, they can be applied as true changes of variables in the functional integral, instead of mere replacements of integrands. This property overcomes a major difficulty of the functional $\Gamma$. Finally, the new approach allows us to prove the renormalizability of gauge theories in a general field-covariant setting. We generalize known cohomological theorems to the master functional and show that when there are no gauge anomalies all divergences can be subtracted by means of parameter redefinitions and proper canonical transformations.

PDF

Eur. Phys. J. C 73 (2013) 2363 | DOI: 10.1140/epjc/s10052-013-2363-4

arXiv:1205.3862 [hep-th]

We study a new generating functional of one-particle irreducible diagrams in quantum field theory, called master functional, which is invariant under the most general perturbative changes of field variables. The functional $\Gamma$ does not transform as a scalar under the transformation law inherited from its very definition, although it does transform as a scalar under an unusual transformation law. The master functional, on the other hand, is the Legendre transform of an improved functional W = ln Z with respect to the sources coupled to both elementary and composite fields. The inclusion of certain improvement terms in W and Z is necessary to make this transform well defined. The master functional behaves as a scalar under the transformation law inherited from its very definition. Moreover, it admits a proper formulation, obtained extending the set of integrated fields to the so-called proper fields, which allows us to work without passing through Z, W or $\Gamma$. In the proper formulation the classical action coincides with the classical limit of the master functional, and correlation functions and renormalization are calculated applying the usual diagrammatic rules to the proper fields. Finally, the most general change of field variables, including the map relating bare and renormalized fields, is a linear redefinition of the proper fields.

PDF

Eur. Phys. J. C 73 (2013) 2385 | DOI: 10.1140/epjc/s10052-013-2385-y

arXiv:1205.3584 [hep-th]

In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W = ln Z behave as scalars. We investigate the relation between composite fields and changes of field variables, and show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples.

PDF

Eur. Phys. J. C 73 (2013) 2338 | DOI: 10.1140/epjc/s10052-013-2338-5

arXiv:1205.3279 [hep-th]

I discuss several issues about the irreversibility of the RG flow and the trace anomalies $c$, $a$ and $a’$. First I argue that in quantum field theory: $i$) the scheme-invariant area $\Delta a’$ of the graph of the effective beta function between the fixed points defines the length of the RG flow; $ii$) the minimum of $\Delta a’$ in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points; $iii$) in even dimensions, the distance between the fixed points is equal to $\Delta a =a_{UV}-a_{IR}$. In even dimensions, these statements imply the inequalities $0 \leq \Delta a \leq \Delta a’$ and therefore the irreversibility of the RG flow. Another consequence is the inequality $a \leq c$ for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain “oriented-triangle inequalities”, imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is irreversible also in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of $d=3$ theories where the RG flow is integrable at each order of the large $N$ expansion.

PDF

Class.Quant.Grav. 21 (2004) 29-50 | DOI: 10.1088/0264-9381/21/1/003

arXiv:hep-th/0210124

Search this site

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)