## Nonrenormalizable theories

We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

Phys. Rev. D 94 (2016) 025028 | DOI: 10.1103/PhysRevD.94.025028

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of nonrenormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions $d>3$. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

Mod. Phys. Lett. A 30 (2015) 1540004 | DOI: 10.1142/S0217732315400040

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

I study the problem of renormalizing a non-renormalizable theory with a reduced, eventually finite, set of independent couplings. The idea is to look for special relations that express the coefficients of the irrelevant terms as unique functions of a reduced set of independent couplings $\lambda$, such that the divergences are removed by means of field redefinitions plus renormalization constants for the $\lambda$s. I consider non-renormalizable theories whose renormalizable subsector $R$ is interacting and does not contain relevant parameters. The “infinite” reduction is determined by $i$) perturbative meromorphy around the free-field limit of $R$, or $ii$) analyticity around the interacting fixed point of $R$. In general, prescriptions $i$) and $ii$) mutually exclude each other. When the reduction is formulated using $i$), the number of independent couplings remains finite or slowly grows together with the order of the expansion. The growth is slow in the sense that a reasonably small set of parameters is sufficient to make predictions up to very high orders. Instead, in case $ii$) the number of couplings generically remains finite. The infinite reduction is a tool to classify the irrelevant interactions and address the problem of their physical selection.

JHEP 0508 (2005) 029 | DOI: 10.1088/1126-6708/2005/08/029

arXiv:hep-th/0503131

Certain power-counting non-renormalizable theories, including the most general self-interacting scalar fields in four and three dimensions and fermions in two dimensions, have a simplified renormalization structure. For example, in four-dimensional scalar theories, $2n$ derivatives of the fields, $n>1$, do not appear before the nth loop. A new kind of expansion can be defined to treat functions of the fields (but not of their derivatives) non-perturbatively. I study the conditions under which these theories can be consistently renormalized with a reduced, eventually finite, set of independent couplings. I find that in common models the number of couplings sporadically grows together with the order of the expansion, but the growth is slow and a reasonably small number of couplings is sufficient to make predictions up to very high orders. Various examples are solved explicitly at one and two loops.

JHEP 0507 (2005) 077 | DOI: 10.1088/1126-6708/2005/07/077

arXiv:hep-th/0502237

I show that under certain conditions it is possible to define consistent irrelevant deformations of interacting conformal field theories. The deformations are finite or have a unique running scale (“quasi-finite”). They are made of an infinite number of lagrangian terms and a finite number of independent parameters that renormalize coherently. The coefficients of the irrelevant terms are determined imposing that the beta functions of the dimensionless combinations of couplings vanish (“quasi-finiteness equations”). The expansion in powers of the energy is meaningful for energies much smaller than an effective Planck mass. Multiple deformations can be considered also. I study the general conditions to have non-trivial solutions. As an example, I construct the Pauli deformation of the IR fixed point of massless non-Abelian Yang-Mills theory with $N_c$ colors and $N_f \lesssim 11N_c/2$ flavors and compute the couplings of the term $F^3$ and the four-fermion vertices. Another interesting application is the construction of finite chiral irrelevant deformations of $N=2$ and $N=4$ superconformal field theories. The results of this paper suggest that power-counting non-renormalizable theories might play a role in the description of fundamental physics.

JHEP 0310 (2003) 045 | DOI: 10.1088/1126-6708/2003/10/045

arXiv:hep-th/0309251

As it stands, quantum gravity coupled with matter in three spacetime dimensions is not finite. In this paper I show that an algorithmic procedure that makes it finite exists, under certain conditions. To achieve this result, gravity is coupled with an interacting conformal field theory $C$. The Newton constant and the marginal parameters of $C$ are taken as independent couplings. The values of the other irrelevant couplings are determined iteratively in the loop- and energy-expansions, imposing that their beta functions vanish. The finiteness equations are solvable thanks to the following properties: the beta functions of the irrelevant couplings have a simple structure; the irrelevant terms made with the Riemann tensor can be reabsorbed by means of field redefinitions; the other irrelevant terms have, generically, non-vanishing anomalous dimensions. The perturbative expansion is governed by an effective Planck mass that takes care of the interactions in the matter sector. As an example, I study gravity coupled with Chern-Simons $U(1)$ gauge theory with massless fermions, solve the finiteness equations and determine the four-fermion couplings to two-loop order. The construction of this paper does not immediately apply to four-dimensional quantum gravity.

Nucl.Phys. B687 (2004) 124-142 | DOI: 10.1016/j.nuclphysb.2004.03.024

arXiv:hep-th/0309250

In three spacetime dimensions, where no graviton propagates, pure gravity is known to be finite. It is natural to inquire whether finiteness survives the coupling with matter. Standard arguments ensure that there exists a subtraction scheme where no Lorentz-Chern-Simons term is generated by radiative corrections, but are not sufficiently powerful to ensure finiteness. Therefore, it is necessary to perform an explicit (two-loop) computation in a specific model. I consider quantum gravity coupled with Chern-Simons U(1) gauge theory and massless fermions and show that renormalization originates four-fermion divergent vertices at the second loop order. I conclude that quantum gravity coupled with matter, as it stands, is not finite in three spacetime dimensions.

Nucl.Phys. B687 (2004) 143-160 | DOI: 10.1016/j.nuclphysb.2004.03.023