Recent theorems

Recent Papers

Higgs boson

We consider renormalizable Standard-Model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu–Jona-Lasinio mechanism gives masses to fermions and gauge bosons, and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-$N_{c}$ expansion, prove that there exists a broken phase and study the phase space. In general, the minimum may break invariance under boosts, rotations and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data, within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix and neutrino oscillations.

PDF

Phys. Rev. D83 (2011) 056005 | DOI: 10.1103/PhysRevD.83.056005

arXiv:1101.2014 [hep-th]

If Lorentz symmetry is violated at high energies, interactions that are usually non-renormalizable can become renormalizable by weighted power counting. Recently, a CPT invariant, Lorentz violating extension of the Standard Model containing two scalar-two fermion interactions (which can explain neutrino masses) and four fermion interactions (which can explain proton decay) was proposed. In this paper we consider a variant of this model, obtained suppressing the elementary scalar fields, and argue that it can reproduce the known low energy physics. In the Nambu$-$Jona-Lasinio spirit, we show, using a large $N_c$ expansion, that a dynamical symmetry breaking takes place. The effective potential has a Lorentz invariant minimum and the Lorentz violation does not reverberate down to low energies. The mechanism generates fermion masses, gauge-boson masses and scalar bound states, to be identified with composite Higgs bosons. Our approach is not plagued by the ambiguities of approaches based on non-renormalizable vertices. The low-energy effective action is uniquely determined and predicts relations among parameters of the Standard Model.

PDF

Eur.Phys.J. C65 (2010) 523-536 | DOI: 10.1140/epjc/s10052-009-1211-z

arXiv:0904.1849 [hep-ph]

We study the Standard-Model extensions that have the following features: they violate Lorentz invariance explicitly at high energies; they are unitary, local, polynomial and renormalizable by weighted power counting; they contain the vertex $(LH)^2$, which gives Majorana masses to the neutrinos after symmetry breaking, and possibly four fermion interactions; they do not contain right-handed neutrinos, nor other extra fields. We study the simplest CPT invariant Standard-Model extension of this type in detail and prove the cancellation of gauge anomalies. We investigate the low-energy recovery of Lorentz invariance and comment on other types of extensions.

PDF

Phys.Rev. D79 (2009) 025017 | DOI: 10.1103/PhysRevD.79.025017

arXiv:0808.3475 [hep-ph]

Search this site

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)