Recent theorems

Recent Papers

Dimensional regularization

Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

PDF

Phys. Rev. D 92 (2015) 025027 | DOI: 10.1103/PhysRevD.92.025027

arXiv: 1501.06692 [hep-th]

We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the $\gamma $ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.

PDF

Phys. Rev. D 89 (2014) 125024 | DOI: 10.1103/PhysRevD.89.125024

arXiv: 1405.3110 [hep-th]

We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

PDF

Eur. Phys. J. C 74 (2014) 3083 | DOI: 10.1140/epjc/s10052-014-3083-0

arXiv: 1402.6453 [hep-th]

We develop a general field-covariant approach to quantum gauge theories. Extending the usual set of integrated fields and external sources to “proper” fields and sources, which include partners of the composite fields, we define the master functional $\Omega$, which collects one-particle irreducible diagrams and upgrades the usual $\Gamma$-functional in several respects. The functional $\Omega$ is determined from its classical limit applying the usual diagrammatic rules to the proper fields. Moreover, it behaves as a scalar under the most general perturbative field redefinitions, which can be expressed as linear transformations of the proper fields. We extend the Batalin-Vilkovisky formalism and the master equation. The master functional satisfies the extended master equation and behaves as a scalar under canonical transformations. The most general perturbative field redefinitions and changes of gauge-fixing can be encoded in proper canonical transformations, which are linear and do not mix integrated fields and external sources. Therefore, they can be applied as true changes of variables in the functional integral, instead of mere replacements of integrands. This property overcomes a major difficulty of the functional $\Gamma$. Finally, the new approach allows us to prove the renormalizability of gauge theories in a general field-covariant setting. We generalize known cohomological theorems to the master functional and show that when there are no gauge anomalies all divergences can be subtracted by means of parameter redefinitions and proper canonical transformations.

PDF

Eur. Phys. J. C 73 (2013) 2363 | DOI: 10.1140/epjc/s10052-013-2363-4

arXiv:1205.3862 [hep-th]

We study a new generating functional of one-particle irreducible diagrams in quantum field theory, called master functional, which is invariant under the most general perturbative changes of field variables. The functional $\Gamma$ does not transform as a scalar under the transformation law inherited from its very definition, although it does transform as a scalar under an unusual transformation law. The master functional, on the other hand, is the Legendre transform of an improved functional W = ln Z with respect to the sources coupled to both elementary and composite fields. The inclusion of certain improvement terms in W and Z is necessary to make this transform well defined. The master functional behaves as a scalar under the transformation law inherited from its very definition. Moreover, it admits a proper formulation, obtained extending the set of integrated fields to the so-called proper fields, which allows us to work without passing through Z, W or $\Gamma$. In the proper formulation the classical action coincides with the classical limit of the master functional, and correlation functions and renormalization are calculated applying the usual diagrammatic rules to the proper fields. Finally, the most general change of field variables, including the map relating bare and renormalized fields, is a linear redefinition of the proper fields.

PDF

Eur. Phys. J. C 73 (2013) 2385 | DOI: 10.1140/epjc/s10052-013-2385-y

arXiv:1205.3584 [hep-th]

In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W = ln Z behave as scalars. We investigate the relation between composite fields and changes of field variables, and show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples.

PDF

Eur. Phys. J. C 73 (2013) 2338 | DOI: 10.1140/epjc/s10052-013-2338-5

arXiv:1205.3279 [hep-th]


The maximum pole of a diagram with $V$ vertices and $L$ loops is at most $1/\varepsilon^{m(V,L)}$, where $m(V,L)=\min (V-1,L).$ The result holds in dimensional regularization, where $\varepsilon = d-D$, $d$ is the physical dimension and $D$ the continued one. Moreover, vertices are counted treating mass terms and the other non-dominant quadratic terms as “two-leg vertices”.

Read the proof →

I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.

PDF

Int.J.Mod.Phys. A20 (2005) 1389-1418 | DOI: 10.1142/S0217751X0501983X

arXiv:hep-th/0404053

In flat space, $\gamma_5$ and the epsilon tensor break the dimensionally continued Lorentz symmetry, but propagators have fully Lorentz invariant denominators. When the Standard Model is coupled with quantum gravity $\gamma_5$ breaks the continued local Lorentz symmetry. I show how to deform the Einstein lagrangian and gauge-fix the residual local Lorentz symmetry so that the propagators of the graviton, the ghosts and the BRST auxiliary fields have fully Lorentz invariant denominators. This makes the calculation of Feynman diagrams more efficient.

PDF

Phys.Lett. B596 (2004) 90-95 | DOI: 10.1016/j.physletb.2004.06.089

arXiv:hep-th/0404032

Search this site

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)