### Course

19R1 D. Anselmi
Theories of gravitation

Last update: October 5th 2018

PhD course – 54 hours – Videos of lectures and PDF files of slides

To be held in the first part of 2019 – Stay tuned

Program

## Conventional form

Consider a functional integral
$\mathcal{I}=\int [\mathrm{d}\varphi ]\hspace{0.02in}\exp \left( -S(\varphi)+\int J\left( \varphi -bU\right) \right) ,$
where $U(\varphi ,bJ)$ is a local function of $\varphi$ and $J$, and $b$ is a constant. Then there exists a perturbatively local change of variables
$\varphi =\varphi (\varphi ^{\prime },b,bJ)=\varphi ^{\prime }+\mathcal{O}(b),$
expressed as a series expansion in $b$, such that
$\mathcal{I}=\int [\mathrm{d}\varphi ^{\prime }]\hspace{0.02in}\exp \left( -S^{\prime }(\varphi ^{\prime },b)+\int J\varphi ^{\prime }\right) ,$
where $S^{\prime }(\varphi ^{\prime },b)=S(\varphi (\varphi^{\prime },b,0))$.

### Search this site

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation

### Book

14B1 D. Anselmi
Renormalization

PDF

Last update: May 9th 2015, 230 pages

Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)