Recent theorems

Recent Papers

Classical gravity

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of nonrenormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions $d>3$. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

PDF

Mod. Phys. Lett. A 30 (2015) 1540004 | DOI: 10.1142/S0217732315400040

The classical action of quantum gravity, determined by renormalization, contains infinitely many independent couplings and can be expressed in different perturbatively equivalent ways. We organize it in a convenient form, which is based on invariants constructed with the Weyl tensor. We show that the FLRW metrics are exact solutions of the field equations in arbitrary dimensions, and so are all locally conformally flat solutions of the Einstein equations. Moreover, expanding the metric tensor around locally conformally flat backgrounds the quadratic part of the action is free of higher derivatives. Black-hole solutions of Schwarzschild and Kerr type are modified in a non-trivial way. We work out the first corrections to their metrics and study their properties.

PDF

JHEP 1305 (2013) 028 | DOI: 10.1007/JHEP05(2013)028

arXiv:1302.7100 [gr-qc]

I prove that classical gravity coupled with quantized matter can be renormalized with a finite number of independent couplings, plus field redefinitions, without introducing higher-derivative kinetic terms in the gravitational sector, but adding vertices that couple the matter stress-tensor with the Ricci tensor. The theory is called “acausal gravity”, because it predicts the violation of causality at high energies. Renormalizability is proved by means of a map M that relates acausal gravity with higher-derivative gravity. The causality violations are governed by two parameters, a and b, that are mapped by M into higher-derivative couplings. At the tree level causal prescriptions exist, but they are spoiled by the one-loop corrections. Some ideas are inspired by the usual treatments of the Abraham-Lorentz force in classical electrodynamics.

PDF

JHEP 0701 (2007) 062 | DOI: 10.1088/1126-6708/2007/01/062

arXiv:hep-th/0605205

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)