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Abstract

I review recent results on conformal field theories in four dimensions and quantum field theories

interpolating between conformal fixed points, supersymmetric and non-supersymmetric. The talk is

structured in three parts: i) central charges, ii) anomalous dimensions and iii) quantum irreversibility.
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The family of theories, in general UV-free, that interpolate between two conformal fixed points, in
such a way that the IR limit is reachable by (resummed) perturbation theory, is called conformal window.
The conformal window, which can be viewed as the convergence radius of the perturbative series, does
not contain QCD, where other non-perturbative effects have to be taken into account. Yet it is the region
separating the perturbative regime from QCD. Understanding the conformal window better can be a
source of insight into the low-energy limit of QCD itself.

In two dimensions conformal field theories have an infinite symmetry [1] and are sometimes exactly
solvable. In higher dimensions, there are simplifications in the presence of supersymmetry and exact
results are available. Very general theorems, implications of unitarity, give exact results even in the
absence of supersymmetry.

Here I summarize the research that I undertook on these issues over the past three years. The paper is
divided in three sections: i) central charges, based on ref. [2]; ii) anomalous dimensions, on refs. [3, 4, 5];
and iii) quantum irreversibility, on refs. [6, 7, 8].

1. Central charges

I consider, as a concrete example, N=1 supersymmetric QCD with group G = SU(Nc) and Nf quarks in
the fundamental representation. I compute the infrared values of the gravitational central charges called
c and a in the conformal window 3Nc/2 < Nf < 3Nc.

The theory contains gauge superfields V a, a = 1, . . . , N2
c − 1, and chiral quark and antiquark super-

fields, Qαi and Q̃αi, α = 1, . . . , Nc, i = 1, . . . , Nf , whose physical components are the gauge potentials

Aa
µ and Majorana gauginos λa, and the complex scalars φαi and φ̃αi and Majorana spinors ψαi and ψ̃αi,

respectively. This theory has the usual gauge interactions and no superpotential.
The Konishi and R currents, whose fermion contributions are

Kµ =
1

2
ψ̄γµγ5ψ +

1

2
˜̄ψγµγ5ψ̃, Rµ =

1

2
λ̄
a
γµγ5λ

a − 1

6
(ψ̄γµγ5ψ + ˜̄ψγµγ5ψ̃), (1)

are classically conserved, but anomalous at the quantum level. We distinguish internal and external
anomalies, the latter associated with external background sources.

The internal anomalies of Kµ and Rµ are expressed by the operator equations

∂µR
µ =

1

48π2
[3Nc −Nf (1− γ)]F a

µν F̃
a
µν , ∂µK

µ =
Nf

16π2
F a
µν F̃

a
µν .

There is an anomaly-free, RG-invariant combination of Kµ and Rµ [9]:

Sµ = Rµ +
1

3

(
1− 3Nc

Nf
− γ
)
Kµ.
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The coefficient of Kµ is the numerator of the exact NSVZ [10] β-function

β(g) = − g3

16π2

3Nc −Nf (1− γ(g))
1− g2Nc/8π2

(2)

and γ/2 is the anomalous dimension of the superfield Q (or Q̃).
The first example of exact IR result is the anomalous dimension

γIR = 1− 3Nc

Nf
(3)

of the quark fields, obtained by setting β equal to zero. We now compute other interesting quantities in
the IR limit.

Rµ is the lowest component of the supercurrent superfield Jαα̇ that also contains the stress tensor and
supersymmetry currents. To study the gravitational central charges we introduce the background metric
gµν and source Vµ for the R-current. In these background fields the trace and R-anomalies are related
by supersymmetry and read, in a critical theory,

Θ =
c

16π2
(Wµνρσ)

2 − a

16π2
(R̃µνρσ)

2 +
c

6π2
V 2
µν , ∂µR

µ =
c− a
24π2

RµνρσR̃
µνρσ +

5a− 3c

9π2
Vµν Ṽ

µν .

We include a factor of
√
g in the definition of Rµ. Here Wµνρσ is the Weyl tensor and R̃µνρσ is the dual

of the curvature tensor, the second term of Θ being the Euler density; Vµν is the field strength of Vµ.
The coefficient a of the Euler density is an independent constant, while the coefficients of the (Wµνρσ)

2

and (Vµν )
2 terms are related. This can be proved by observing that the two-point function of Jαα̇ has a

unique structure in superspace [11],

〈Jαα̇(z)Jββ̇(0)〉 ∝ c
sαβ̇ s̄βα̇

(s2s̄2)2
, (4)

and calculating the partial derivative µ ∂/∂µ of the correlators

〈Tµν(x)Tρσ(0)〉 = −
c

48π4

∏(2)

µν,ρσ

(
1

|x|4
)
, 〈Rµ(x)Rν (0)〉 =

c

3π4
πµν

(
1

|x|4
)
,

using ∫
Θ = µ

∂

∂µ
, µ

∂

∂µ

(
1

|x|4
)

= 2π2δ(x). (5)

Here πµν = ∂µ∂ν −2δµν and
∏(2)

µν,ρσ = 2πµνπρσ − 3(πµρπνσ + πµσπνρ). The second relation of (5) can be
obtained by means of a regularization technique.

In a free supersymmetric gauge theory with Nv gauge and Nχ chiral multiplets, the values of c and a
are

cUV =
1

24
(3Nv +Nχ) , aUV =

1

48
(9Nv +Nχ) .

Off-criticality, there are additional terms in Θ and ∂µR
µ, proportional to β(g), including the internal

contribution β/4 F 2
µν , and the central charges depend on the coupling, i.e. c = c(g) and a = a(g).

Since Sµ is quantum-conserved in the absence of sources, its external anomalies are µ-independent
[12]:

∂µS
µ =

s1
24π2

RµνρσR̃
µνρσ +

s2
9π2

Vµν Ṽ
µν .

A one-loop computation gives

s1 =
1

16
(N2

c + 1), s2 =
9

16

(
N2

c − 1− 2NcNf

(
Nc

Nf

)3
)
.

Now, we observe that Rµ = Sµ in the IR limit, whence

s1 = cIR − aIR, s2 = 5aIR − 3cIR,

2
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so that we finally get

cIR =
1

16

(
7N2

c − 2− 9
N4

c

N2
f

)
, aIR =

3

16

(
2N2

c − 1− 3
N4

c

N2
f

)
. (6)

Observe that cIR and aIR are non-negative throughout the conformal window, in agreement with their
nature of central charges. In particular, the inequality cIR ≥ 0 follows from reflection positivity of the
stress-tensor two-point function.

The total flows of the central charges are

cUV − cIR = −NcNf

48
γIR

(
3
Nc

Nf
+ 9

N2
c

N2
f

− 4

)
, aUV − aIR =

NcNf

48
γ2IR

(
2 + 3

Nc

Nf

)
≥ 0. (7)

The difference aUV − aIR is everywhere positive in the conformal window, as conjectured by Cardy [13].
This phenomenon is called quantum irreversibility. Instead, the difference cUV− cIR is positive in part of
the conformal window and negative in the rest.

A corollary of the above derivation is that both c and a are constant on families of conformal field
theories, i.e. they are marginally uncorrected.

The procedure that I have illustrated can be applied any time there is a unique R-current and a
conformal window. The effects of mass perturbations and symmetry breaking can be straightforwardly
included. The analysis of a wide class of models, done in [14], confirms the conclusions just derived, in
particular the inequalities aUV ≥ aIR ≥ 0, on which I have more to say in section 3.

2. Anomalous dimensions

The second class of quantities that characterize a conformal field theory are the anomalous dimensions.
Given that the operator-product expansion of the stress-tensor does not close, of primary interest is the
spectrum of anomalous dimensions of the (infinitely many) higher-spin currents generated by the singular
terms of the TT OPE. In general the classification is not simple, but with the help of supersymmetry
we can reach this goal in various models. Using theorems discovered in the context of the deep inelastic
scattering, in particular the Ferrara–Gatto–Grillo theorem [15] and the Nachtmann theorem [16], several
conclusions about strongly coupled conformal field theories can be derived. These conclusions hold also
for non-supersymmetric theories.

The algorithm to work out the currents of the quantum conformal algebra starts from the stress tensor
T and the spin-0 component Σ0 of the Konishi multiplet, which is the first operator generated by the TT
OPE [11], and proceeds via a combination of two steps:

i) supersymmetry, which moves “vertically” in the algebra, i.e. changes the dimension of the operators
and therefore their singularity in the OPE;

ii) orthogonalization of two-point functions, which moves “horizontally”, i.e. at the same singularity
level in the OPE.

I illustrate this very briefly in the case of the N=2 vector multiplet. The current multiplets have
length 2 in spin units, in particular the multiplet of the stress tensor. There is one multiplet for each
spin, even or odd.

The vector, spinor and scalar contributions to the currents of the N=2 vector multiplet (Aµ,λi,M,N),
i = 1, 2, are schematically given in the free-field limit by

J V = F+
µα

←→
Ω evenF

−

αν , J F =
1

2
λ̄iγµ
←→
Ω oddλi, J S =M

←→
Ω evenM +N

←→
Ω evenN,

AV = F+
µα

←→
Ω oddF

−

αν , AF =
1

2
λ̄iγ5γµ

←→
Ω evenλi, AS = −2iM←→Ω oddN,

plus improvement terms [17], where
←→
Ω even/odd denotes an even/odd string of derivative operators

←→
∂ ,

J ,A denote the even and odd (axial) currents, and V, F, S mean vector, fermion, scalar. A simple set of
rules determines the operation (i). The result is

J S → −2AF + 2AS , J F → −8AV +AS , J V → −2AV +
1

4
AF ,

AF → −8J V + J S , AS → −2J F + 2J S , AV → −2J V +
1

4
J F .

3
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This operation raises the spin by one unit and it is independent of the spin on the basis (J S,F,V , AS,F,V ),
which is, however, not diagonal in the sense of point (ii). The diagonalization produces the correct
higher-spin currents, which are rational combinations of (J S,F,V , AS,F,V ).

The current multiplet of the stress tensor reads in particular

T0 =
1

2
J S
0 , T1 = −AF

1 +AS
1 , T2 = 8J V

2 − 2J F
2 + J S

2 .

It contains also a spin-1 current T1 (an R-current) and a spin-0 mass operator T0.
One can proceed similarly for the hypermultiplet and then combine the two in an N=2 finite theory,

which is the case we are interested in here. This family is parametrized by a coupling constant g as well
as the rank Nc of the gauge group, which we assume to be SU(Nc). Multiplets having different minimal
spins are orthogonal, but some pairs of multiplets have the same minimal spin. These, in general, mix
under renormalization. In particular, there is a multiplet T ∗ mixing with T .

At g different from zero the higher-spin currents acquire anomalous dimensions (and are extended
to include other supersymmetric partners that disappear when g = 0). Let h2s denote the minimal
anomalous dimensions of the even-spin levels. The Ferrara–Gatto–Grillo–Nachtmann (FGGN) theorem
states that, starting with the spin-2 level, the spectrum h2s is positive, increasing and convex:

0 ≤ h2s ≤ h2(s+1), h2(s+1) − h2s ≤ h2s − h2(s−1).

The most important implication of this theorem is that the OPE algebra generated by the multiplet of
the stress tensor does close, in some special situation that we now describe.

We can classify conformal field theory in two classes:
i) open conformal field theory, when the quantum conformal algebra contains an infinite number of

(generically non-conserved) currents;
ii) closed conformal field theory, when the quantum conformal algebra closes with a finite set of

(conserved) currents.
The FGGN theorem implies in particular that the spectrum is identically zero if one h2s is zero, and

identically infinity if one h2s is infinity. Precisely:
a) if h2s = 0 for some s > 1, then h2s = 0 ∀s > 0, and
b) if h2s =∞ for some s > 1, then h2s =∞ ∀s > 1.

Equipped with this, we can describe the moduli space of conformal field theory as a ball centred in
free-field theory. As a radius r one can take the value of any h2s with s > 1. The boundary sphere is the
set of closed theories. The bulk is the set of open theories.

Let us discuss the two cases r = 0 and r =∞ separately.
It is a rigorous and completely general consequence of the theorem that when r =∞ all current mul-

tiplets have infinite anomalous dimensions and decouple from the OPE (with the only possible exception
of T ∗, which is “screened” by T ). Supersymmetry plays an important role here, since each multiplet
necessarily has some component with even spin, and therefore falls under the range of the Nachtmann
theorem for r →∞.

The limit in which r → ∞ is the limit of maximally strong interaction, in the sense that once the
quantum conformal algebra closes, there is no way to make the interaction any stronger. It is not sufficient
to take g → ∞: in N=4 supersymmetric Yang–Mills theory, indeed, the g ↔ 1/g duality suggests that
the limit g →∞ at Nc fixed is free and not closed. To have the maximally strong interaction, one needs
to take the large-Nc limit at the same time.

In the limit r → 0 some currents with non-vanishing anomalous dimension might survive, in principle,
since r is sensitive only to the minimal anomalous dimension of each even-spin level. It is nevertheless
reasonable to expect that r → 0 reduces to a free-field theory, and this is what we conjecture. Indeed, no
interacting theory with infinitely many conserved currents is known. An interesting case, in this respect,
is N=4 supersymmetric Yang–Mills theory, where the spectrum h2s includes the full set of anomalous
dimensions and therefore r → 0 ensures that all higher-spin currents generated by the OPE are conserved.

The picture that has emerged can be summarized by the following statements.
i) Closed conformal field theory is the boundary of the moduli space of open conformal field theory.
ii) Closed conformal field theory is the exact solution to the strongly coupled large-Nc limit of open

conformal field theory.

4
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iii) A closed quantum conformal algebra determines uniquely the associated conformal field theory.
iv) A closed quantum conformal algebra is determined uniquely by two central charges, c and a.
We now comment on point (iv). The basic procedure to determine the quantum conformal algebra

of closed conformal field theory (the so-called fusion rules) can be applied to any set of finite operators
(for example, non-singlet currents with respect to some flavour group), although we focus on the minimal
algebra (namely the one of the stress tensor) for the sake of generality. The procedure consists of the
following steps. One studies the free-field OPE of an open conformal field theory and organizes the
currents into orthogonal and mixing multiplets. Secondly, one turns a weak interaction on and computes
the anomalous dimensions of the operators to the lowest orders in the perturbative expansion. Finally,
one drops all the currents with a non-vanishing anomalous dimension. More generically, one can postulate
a set of spin-0, 1 and 2 currents, which we call T0,1,2, and study the most general OPE algebra consistent
with closure and unitary.

The closed N=2 quantum conformal algebra for generic c and a reads schematically

T0 T0 =
c

|x|4 +
1

|x|2 T0,

T1 T1 =
c

|x|6 +
1

|x|4 T0 +
(
1− a

c

) 1

|x|3 T1 +
1

|x|2 T2,

T2 T2 =
c

|x|8 +
(
1− a

c

) 1

|x|6 T0 +
(
1− a

c

) 1

|x|5 T1 +
1

|x|4 T2,

plus descendants and regular terms. We have emphasized those coefficients that are proportional to
(1− a/c). We observe that
◦ the c = a closed algebra is unique and coincides with the N=4 one.
◦ given c and a, there is a unique closed conformal algebra with N=2 supersymmetry.
c has a natural interpretation as the central extension of the algebra, while the combination (1− a/c)

is a structure constant.
There might be a slightly more general, but still closed, structure, if the multiplet T ∗, which mixes

with T , does not drop. This algebra is determined by c, a and the anomalous dimension of T ∗.
Finally, we observe that in N=1 (and non-supersymmetric) theories the multiplet of the stress-tensor

will not contain spin-0 partners, in general, but at most the R-current. The above considerations stop at
the spin-2 and 1 levels of the OPE, but the procedure to determine the closed algebra is the same. What
is more subtle is to identify the physical situation that the closed limit should describe.

3. Quantum irreversibility

Quantum field theory defines a natural fibre bundle. The base manifold is the space of physical correlators
and the fibre is the space of scheme choices, with suitable regularity restrictions. A projection onto the
base manifold is well defined and ensures scheme independence of the physical correlators. We call this
bundle the scheme bundle.

The scheme bundle is equipped with a metric f and a fundamental one-form ω, defined as follows.
Consider the two-point function of the trace Θ of the stress tensor. In four dimensions, we normalize it
as

〈Θ(x) Θ(0)〉 = 1

15π4

β2(t)f(t)

|x|8 .

Reflection positivity ensures that f ≥ 0. Actually, f is strictly positive throughout the RG flow, since
the zeros of the two-point function are parametrized precisely by the factor β2. Therefore f is a metric in
the space of coupling constants, defined on the fibre. The beta function is also defined on the fibre, since
it is scheme-dependent, but the combination β2(t)f(t) is scheme-independent and therefore lives on the
base manifold. It is not a metric on the base manifold, however, since it vanishes at the critical points.

The fundamendal one-form ω is defined as

ω = −dλ β(λ) f(λ), (8)

λ denoting the coupling constant, such that Θ = β(λ)O for a suitable operator O. In particular, λ = lnα
in a gauge field theory, where O = F 2/4.

5
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The central charge a multiplies the Gauss–Bonnet integrand, or Euler density,

Gn = (−1)n

2 εµ1ν1···µn

2
νn

2

ε
α1β1···αn

2
βn

2

n

2∏

i=1

Rµiνi
αiβi

,

in the trace anomaly coupled to an external gravitational field. Gn is a non-trivial total derivative, i.e.
the total derivative of a non-gauge-covariant current (the Chern–Simons form) and so it is defined up to
trivial total derivatives, the divergence of a gauge-covariant current. The topological numbers calculated
with a modified Gauss–Bonnet integrand of the form G̃n = Gn + ∇αJ

α are exactly the same as those
computed with Gn.

The modified integrand can be chosen to be linear in the conformal factor, and in that case we
call it pondered Euler density. In particular G̃n ∝ 2

n

2 φ for a conformally-flat metric gµν = δµνe
2φ.

Writing
√
gGn = ∂αC

α, where Cα is the Chern–Simons form, the pondered Chern–Simons form reads

C̃α = Cα +
√
gJα and

√
gG̃n = ∂αC̃

α.

In four dimensions, G̃4 reads G̃4 = G4 − 8
32R = G4 +∇αJ

α
4 , with J

α
4 = − 8

3∇αR. In six dimensions

we have G̃6 ≡ G6 +∇αJ
α
6 with

Jα
6 = −48

5
Rαµ∇µR+

102

25
∇αR2 − 12∇α(RµνR

µν)− 24

5
∇α

2R,

so that on conformally-flat metrics
√
g G̃4 = 1622φ and

√
g G̃6 = 48 2

3φ.
In generic n the pondered Euler density has the form

G̃n = Gn +∇αJ
α
n = Gn + · · ·+ pn2

n/2−1R, Jα
n = · · ·+ pn∇α

2
n

2
−2R, (9)

and on conformally-flat metrics
√
gG̃n = −2(n− 1)pn2

nφ. Only the coefficient pn in (9) is relevant for

us and the definition of G̃n makes it easily calculable.
The Euler characteristic of the n-dimensional sphere Sn is equal to 2. In our notation we can write

(−1)n

2 2
3n

2
+1π

n

2

(n
2

)
! =

∫

Sn

√
gGn d

nx =

∫

Sn

√
gG̃n d

nx = −2(n− 1)pn

∫

Sn

2
n

2 φdnx.

The calculation in the sphere with metric ds2 = dx2

(1+x2)2 , gives pn = − 2
n

2 n
2(n−1) , which agrees with the

known values in n = 4 and n = 6. In [7] the expression of G̃8 is also worked out and p8 is checked.
Summarizing, on conformally flat metrics

√
gG̃n = 2

n

2 n2
n

2 φ.

According to ref. [6] the Euler density that should appear in the trace anomaly should be precisely
the pondered Euler density, thereby removing the ambiguities associated with the coefficients a′ of the
trivial total derivative terms of the form ∇αJ

α
n . The dependence of the trace anomaly on the conformal

factor φ becomes extraordinarily simple:

Θ = an G̃n + conf. invs. = 2
n

2 n an e
−nφ

2
n

2 φ, (10)

and the relation between the total a-flow and the Θ two-point function becomes manifest. Normalizing
a as in (10), the two-point function reads at criticality

〈Θ(x)Θ(y)〉 = −2n

2 n an 2
n

2 δ(x− y)

and the expression for the a-flow is therefore:

aUV
n − aIRn =

∫
dnx |x|n 〈Θ(x)Θ(0)〉
2

3n

2
−1 nΓ(n+ 1)

. (11)

A convenient normalization of an is that it be equal to 1 for a real scalar field, and reads in general

Ns + fnNf + vnNv (12)

6
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for free-field theories with Ns real scalar fields, Nf Dirac fermions and Nv vectors. In n = 4 we change
the normalization of a according to this convention (f4 = 11, v4 = 62) and write

∆a = aUV − aIR =

∫ IR

UV

ω ≥ 0. (13)

The total RG flow of a is the integral of the fundamental one-form ω between the fixed points. Quantum
irreversibility is measured by the invariant (i.e. scheme-independent) area of the graph of the beta
function between the fixed points. In this integral, scheme independence is reparametrization invariance.

This formula can be checked to the fourth-loop order in the most general renormalizable theory.
Here we focus on QCD in the conformal window in the neighbourhood of the asymptotic freedom point
Nf = 11

2 Nc. The strategy for computing higher-loop corrections to the trace anomaly was developed in
refs. [18]. See [7] for its extension to six dimensions.

Collecting the results of these references in a general formula, the third-loop RG flow of a reads

aUV − aIR =
1

2
fUVβ2α

2
IR +O(α3

IR),

where β1 and β2 are the first two coefficients of the beta function, β(α) = β1α+ β2α
2 +O(α3). Formula

(13) gives exactly the same result. Concretely, with Nf flavours and Nc colours we have

aUV − aIR =
44

5
NcNf

(
1− 11

2

Nc

Nf

)2

.

In supersymmetric QCD the prediction can be compared with the exact formula (7). The check can
be extended to the fourth-loop order [6], in both the supersymmetric and non-supersymmetric cases. In
six dimensions, formula (11) has been checked to the fourth-loop order in the theory ϕ3 [7].

I now discuss the extension of these results to all orders. Renormalization can be seen [6] as the
restoration of positivity (or, better, boundedness from below) of the generating functional of 1PI diagrams
in the Euclidean framework. This positivity is in general violated by the regularization procedure and
divergences.

Here, we consider the induced action for the conformal factor φ. Despite the fact that φ is an external
source, the positivity property holds because φ couples to Θ, an evanescent operator. At most, we might
have to adjust the unique free parameter (“coupling constant”) at our disposal: the a′ ambiguity.

The quantum-irreversibility formula is derivable from the statement:
the induced effective action SR for the conformal factor φ [19] is positive-definite throughout the RG flow,
if and only if it is positive-definite at a given energy,
which implies the “a-theorem”:

i) a is non-negative;
ii) the total RG flow of a is non-negative and equal to the invariant area of the beta function:

aUV − aIR = −
∫ λIR

λUV

dλ β(λ)f(λ) ≥ 0.

Now, SR[φ] is the solution of the equation Θ = e−4φ δSR[φ]
δφ . At criticality in the Euclidean framework

we have

Θ =
1

90(4π)2

[
a∗e

−4φ
2

2φ+
1

6
(a∗ − a′∗)2R

]

and therefore

SR[φ] =
1

180

1

(4π)2

∫
d4x {a∗(2φ)2 − (a∗ − a′∗)

[
2φ+ (∂µφ)

2
]2}.

The two terms of SR[φ] have to be separately positive. In particular, positivity of the first term implies
a∗ > 0 in the IR if a∗ > 0 in the UV. This is true, since afree > 0 in a free-field theory.

The quantity a′ is defined up to an additive, coupling-independent constant and needs to be normalized
at a given energy scale. The quantity whose RG flow is given by (13) is precisely a′ and our statement
amounts to showing that ∆a′, which is certainly non-negative, is equal to ∆a.

7
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The second term of SR[φ] is positive at criticality if a′
∗
≥ a∗. This condition has to hold throughout

the renormalization group flow, in particular a′UV ≥ aUV if and only if a′IR ≥ aIR. Now, we know that
a′UV ≥ a′IR. Let us fix a′ by demanding that a and a′ coincide in the UV, a′UV = aUV. Then we have,
combining the various inequalities derived so far, aUV = a′UV ≥ a′IR ≥ aIR from which the claimed
inequality aUV ≥ aIR follows.

Now, let us tentatively suppose that with the normalization a′UV = aUV we have the strict inequality
a′IR > aIR. We prove that this is absurd and conclude that a′IR = aIR.

We can do this by changing the normalization of a′ with the shift a′ → a′ new = a′ − a′IR + aIR, so
that a′ new

IR = aIR. We have a′UV → a′ new
UV = a′UV − a′IR + aIR and therefore a′UV no longer satisfies the

inequality a′
∗
≥ a∗, since a′ new

UV < aUV. This is a contradiction. We conclude that a′UV = aUV if and only
if a′IR = aIR.

These arguments are somewhat orthogonal, or complementary, to the approach à la spectral rep-
resentation of [20]. In particular, knowledge about the (positivity) properties of the local parts of the
correlators is of fundamental importance.

An extension of these ideas to odd dimensions, which is not straightforward since there is no trace
anomaly in external gravity in odd dimensions, can be obtained by dimensional continuation. The
resulting formula is testable, in principle, in models interpolating between pairs of free-field fixed points.

Finally, I stress that the phenomenon of quantum irreversibility is proper to the dynamical scale µ,
i.e. it is the intrinsic drift of the renormalization group. Explicit scales (masses, Newton’s constant and
other dimensionful parameters) need not be described by formula (13). Moreover, formula (13) has to
be replaced by a more complicated expression also when the stress tensor is not truly finite, but mixes
with other operators (a well-known example is the λϕ4-theory - see sect. 2.3 of [6] for details). These are
signals of the richness of higher-dimensional conformal field theories with respect to the two-dimensional
ones. There is, nevertheless, a remarkable subset, the set c = a, where the two-dimensional properties
are best reproduced. This set admits a generalization to arbitrary dimension and it is defined as the set
of conformal field theories having a trace anomaly quadratic in the Ricci tensor and Ricci curvature [8].

I thank J. Erlich, D.Z. Freedman, M. Grisaru and A.A. Johansen for collaboration of the first topic
of this research.
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