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Abstract

We consider the problem of removing the divergences in an arbitrary gauge-field theory
(possibly nonrenormalizable). We show that this can be achieved by performing, order
by order in the loop expansion, a redefinition of some parameters (possibly infinitely
many) and a canonical transformation (in the sense of Batalin and Vilkovisky) of fields
and BRS sources. Gauge-invariance is turned into a suitable quantum generalization of
BRS-invariance. We define quantum observables and study their properties. We apply
the result to renormalizable gauge-field theories that are gauge-fixed with a nonrenor-
malizable gauge-fixing and prove that their predictivity is retained. A corollary is that
topological field theories are predictive. Analogies and differences with the formalisms of
classical and quantum mechanics are pointed out.
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1 Introduction

Suppose one is studying an ordinary renormalizable gauge field theory and that, for
some unspecified reason, one wants to choose a nonrenormalizable gauge-fixing, namely
a gauge-fixing that gives rise to nonrenormalizable vertices in the BRS action. In the
present paper, we want to study the problem of predictivity of these theories. We de-
termine in full generality the algorithm that permits to remove the divergences of a
gauge-field theory, order by order in the perturbative loop expansion. We show that
the independence of the physical amplitudes from the continuous deformations of the
gauge-fixing survives the correction algorithm (apart from eventual BRS anomalies).

The gauge-fixing is thus supposed to contain constants of negative dimensions in
mass units. We denote them collectively by x throughout this paper. The classical
renormalizable action L..ss is k-independent. One expects the quantum field theory to
retain its predictivity, although infinitely many types of k-dependent counterterms are
needed. What guarantees the preservation of predictivity is not a priori obvious. The
theorems about renormalizability of gauge-field theories that appear in the literature
[T, 2, B] are adapted to renormalizable BRS actions, i.e. renormalizable field theories
that are gauge-fixed with an ordinary renormalizable gauge-fixing. Nevertheless, the
investigation of the problem that we have in mind turns out to be very instructive.

Let Yy be the starting BRS action. We find it convenient to use the formalism of
Batalin and Vilkovisky [4, [5 [6] 7], although we never distinguish between irreducible
and reducible field theories, to retain generality. Instead of speaking of antifields ®*, we
shall speak of BRS sources K. ¥, has to satisfy the master equation [4]. We make the
sufficiently general assumptions that > is linear in K and that the functional measure
is BRS invariant: (X9, %) = 0 and AXy = 0. Precisely, ¥, is the sum of the classical
Lagrangian Lqss(¢, A) plus the BRS variation s¥ of the gauge-fermion W(®) plus the
terms K 4s®4 that couple the BRS sources K4 to the BRS variations s®* of the fields
®4. )\ denote the constants that multiply the gauge-invariant terms of L.,.,. Batalin
and Vilkovisky prove [4] that if the action satisfies the master equation, then the func-
tional integral Z is independent from the continuous deformations of the gauge-fermion
U. Since the nonrenormalizability that we plan to study only comes from W, at first sight
one could think that the argument by Batalin and Vilkovisky is enough to assure predic-
tivity. Indeed, the renormalized action X also satisfies the master equation. However, the
structure of ¥ is not so simple as the structure of Xy: one is not even sure to be able to
identify a renormalized gauge-fermion inside .. In conclusion, the problem that we have
in mind is to prove that the subtraction procedure can be performed while preserving
the independence of the physical amplitudes from the continuous deformations of the
gauge-fermion ¥ that gauge-fixes the starting action Y.

The first step is to find the subtraction algorithm in full generality (i.e. for any gauge-
field theory, eventually a nonrenormalizable one). The algorithm that we find extends
the well-known ones1.

2See for example [I} 2] in the case of ordinary Yang-Mills theories and [3] in the case of higher
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We have to construct, order by order in the loop expansion, the renormalized action X
that is able to guarantee the removal of all the divergences in the effective action I' while
retaining gauge-invariance (which is in fact converted into invariance defined by new
nilpotent operators), although infinitely many kinds of counterterms are needed. The
correction of divergences is achieved by performing, order by order, a redefinition of the
constants A that multiply the gauge-invariant terms of the classical Lagrangian L.,
together with a redefinition of fields and BRS sources. In particular, the redefinition
of fields and BRS sources is a canonical transformation, in the sense of Batalin and
Vilkovisky [4] B, [7], i.e. a transformation that preserves the antibrackets (., .). This is
the key observation of the paper.

In other words, one starts from a classical BRS action ¥, that is the most simple
solution to the master equation, i.e. it is linear in the BRS sources (notice that ¥ is only
one particular solution to the master equation). Then one implements the correction
algorithm, which automatically yields a quantum action ¥, such that the effective action
' is convergent. X is related to ¥y by a set of canonical transformations and redefinitions
of suitable parameters A. Consequently, > is another particular solution to the master
equation. As a matter of fact, ¥ is the good solution. The only problem is that one
does not know the good solution ¥ to the master equation from the beginning. The
subtraction algorithm can thus be considered as the principle of correspondence that
produces the right quantum action ¥ starting from the known classical action ¥,. Such
a correspondence principle is nothing but the search for the correct variables {®, K} and
the correct definitions of the parameters A of the classical Lagrangian L.,s;. One has
nonrenormalizability when the correspondence principle produces infinitely many good
solutions Y and there is no way of privileging a finite subset of them. Indeed, when a
theory is nonrenormalizable, L.,ss must depend on infinitely many A’s, otherwise one
cannot remove the divergences by redefining them.

The second step is the application of the general subtraction algorithm to renormaliz-
able field theories that are treated with a nonrenormalizable gauge-fixing. The fact that
divergences can be made disappear by a set of canonical transformations and redefini-
tions of parameters makes the algorithm nicely tractable and all the properties that we
need can be proved without too much difficulty.

The idea is the following: one would like to prove that the infinitely many x-dependent
counterterms are all BRS-exact, so that the normalization of the coupling constants
associated to them is immateriald. A priori it is not clear what “BRS-exact counterterm”

derivative quantum gravity. The latter is an example of algorithm in which the field redefinitions are
not simply field renormalizations; they are nevertheless independent of the derivatives of the fields and
linearity in the BRS sources is preserved; in general, instead, the field redefinitions contain derivative
terms and linearity in the BRS sources is lost, as we shall see in an example towards the end of the
paper.

3As a matter of fact, we are tacitly assuming that there are not BRS anomalies. If possible, it is con-
venient to move the eventual BRS anomalies from gauge-symmetries to non-gauge ones and completely
neglect the non-gauge symmetries, otherwise the master equation cannot be solved. BRS anomalies can
cause a dependence of the physical amplitudes on a coupling constant that multiplies a BRS-exact term
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means, since the BRS-operator s gets renormalized in a highly nontrivial way (if it is
compared, for example, with the simplicity of the renormalization of s when the gauge-
fixing is an ordinary renormalizable one). As a matter of fact, a “quantum BRS operator”
2 can be introduced [8]: Q generalizes s to the space of fields and BRS sources. It is
nilpotent (2? = 0) and is fundamental for the definition of the observables.

We show that, if the x-derivative % of the zeroth loop order BRS action ¥ is s-
exact (as it happens when only the gauge-fermion ¥ depends on k), then the derivative
g—f of the renormalized action ¥ is 2-exact and the derivative % of the effective action
['is (.,I")-exact. These properties permit to derive the conclusion that any physical
amplitude is k-independent.

Regularization is always understood. The dimensional technique and the minimal
subtraction scheme can be convenient for most purposes [I, 2, B]. Notice, however, that
the operator A introduced by Batalin and Vilkovisky is proportional to §(0) and di-
mensional regularization looses any trace of these terms (see [9] for the study of the
Pauli-Villars regularization of A and [10] for a discussion of §(0) divergent terms related
to the measure in quantum gravity). It is not necessary to use a regularization scheme
that preserves explicit gauge-invariance, since gauge-invariance can always be retrieved
with local counterterms. The formal arguments of the present paper can suggest what
quantum generalization of gauge-invariance has to be retrieved with suitable local coun-
terterms when the regularization scheme explicitly breaks it.

A remark is required in order to specify what we shall mean by “locality” (local
functional, local canonical transformation, and so on). Indeed, when a nonrenormaliz-
able Lagrangian is allowed, an arbitrary number of derivatives can appear. This is not,
strictly speaking, a problem intrinsic in nonrenormalizable theories. It is also present in
renormalizable theories, when one wants to study amplitudes that involve insertions of
composite local operators O(x) of sufficiently high dimensionality. In that case, some
constant x of negative dimension has to be introduced and infinitely many kinds of coun-
terterms can appear. What one can do is to truncate each step of the derivation and each
formula up to some order xP. In this way, all amplitudes with D or less O(z)-insertions
are made finite. Similarly, we can always assume to neglect the powers greater than D
in the negatively dimensioned parameters and, contemporarily, to neglect all the param-
eters of dimension less than —D. Then, the effective action is only made finite up to a
given order in the negatively dimensioned parameters (but to all orders in i). A “local”
functional is a functional such that its “D-truncation” is local. Since the trick can be
used for arbitrarily large D, none of the results gets affected.

For simplicity, we can assume that the propagators are of the form m In other
words, the propagator is defined from the Lagrangian term Q that is quadratic both in
the fields and in derivatives plus the mass terms. All the other terms will be considered
as interactions. This means that in our perturbation series all the parameters but the

in the Lagrangian and this can even happen in a renormalizable theory. Moreover, BRS anomalies can
spoil unitarity. The detailed analysis of these aspects of the problem are beyond the scope of the present
paper and will be eventually treated elsewhere.
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constant A\g that multiplies Q are considered “small”. \g, instead, is considered finite and
not small. This remark is required, since the renormalizablity or nonrenormalizability of
the theory depends on what parameters are considered small and what are considered
finite. In higher derivative quantum gravity [3], for example, if the constants that multiply
the higher derivative terms \/§R2 and /gR,, R" in the classical Lagrangian are “small”,
then the theory is nonrenormalizable; if, on the other hand, they are considered as finite
(on the same footing as the parameter that multiplies the Hilbert-Einstein term ,/gR),
then the theory is renormalizable (but not unitary). As a matter of fact, our arguments
are also valid if the propagators behave like W, for k2 — oo, as long as n < co. In other
words, only a finite number of terms that are quadratic in the fields can be multiplied by
finite (not “small”) parameters, otherwise the previous observations about locality are
nonsense (the theory is truly nonlocal).

Let us now make some comments of a general character. A quantum field theory can
depend on infinitely many arbitrary parameters, without loosing predictivity: it happens
when the on-shell physical amplitudes depend only on finitely many parameters. If this is
the case, the remaining infinitely many parameters can be fixed at any energy at whatever
value one prefers.

This fact suggests that the following classification of quantum field theories deserves
attention. Let us divide quantum field theories into predictive and nonpredictive theories.
Predictive field theories are those theories, whose on-shell physical amplitudes depend on
finitely many parameters. Nonpredictive field theories are those theories, whose on-shell
amplitudes depend on infinitely many parameters.

Renormalizable field theories are a fortiori predictive. Treated with the usual gauge-
fixings, they necessarily depend on finitely many parameters. However, predictive field
theories do not necessarily depend on finitely many parameters, nevertheless the physical
amplitudes can still depend on finitely many parameters. This is for example the case
of renormalizable theories that are treated with a nonrenormalizable gauge-fixing, on
which we focus in the present paper. Correspondingly, nonrenormalizable field theories
are not necessarily nonpredictive. For example, finite theories can be nonrenormalizable
and predictive.

What are the possible applications of our results? First of all, notice that a subtrac-
tion algorithm that is applyable to nonrenormalizable field theories can also be used to
study the renormalization of highly-dimensioned composite operators in ordinary renor-
malizable field theories. Concerning nonrenormalizable gauge-fixings, on the other hand,
it is hard to think such gauge-fixings will ever be used in Yang-Mills theories or in the
Standard Model, since the ordinary renormalizable ones are quite satisfactory. However,
there are theories in which an exotic gauge-fixing can be convenient for some peculiar
reasons. This is the case, for example, of four dimensional topological fields theories of
Witten type [11], 12], 13|, 14}, 15 16], that are now attracting a lot of interest. Among
these, an interesting one is surely the topological sigma-model formulated in [16], which
describes the triholomorphic embeddings of four dimensional Riemannian manifolds into
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almost quaternionic manifoldd]. Tt is an example of an irreducible gauge-field theory,
which is nonrenormalizable, but, since it is also topological, the nonrenormalizability is
entirely due to the gauge-fixing (the classical action is either zero or a topological invari-
ant). It is well-known that the mathematical interpretation of topological field theories
shows that there is a dependence on the gauge-fixing: two gauge-fixings that are not
continuously deformable one into the other give rise to inequivalent field theoriedd. Thus
one cannot turn the gauge-fixing (which in the present case is the triholomorphicity con-
dition on the map) to a renormalizable one without either spoiling general covariance or
changing completely the theory. Nevertheless, one expects the nonrenormalizable theory
to be perturbatively well defined and predictive. This is a corollary of our result, namely
topological field theories (of Witten type) are predictive.

Notice that topological field theories are intrinsically nonperturbative. On the other
hand, in this paper we are only concerned with the perturbative behaviour of quantum
field theories. Our results can thus by described by saying that the nonrenormalizability
of topological models produces no perturbative obstruction to a good definition of them
(apart from the eventual BRS anomalies).

An example of first stage reducible nonrenormalizable topological gauge-field theory
is topological gravity (there are various versions of it: topological conformal gravity,
see [12]; topological gravity with the self-duality condition on the Riemann tensor [13];
topological gravity derived from the twist of N=2 supergravity [14]). The topological
Yang-Mills theory originally formulated by Witten [I1] is, instead, renormalizable, so
that its perturbative definition is straightforward.

An exotic gauge-fixing can also be used in order to make computations easier. For
example, in ref. [I7] a nonlinear gauge-fixing plays an_essential role in simplifying the
perturbative two-loop computation in quantum gravity®.

The paper is organized as follows. In section [2] we fix notation and conventions and
give the fundamental properties that will be useful in successive derivations. In section Bl
we define the nilpotent quantum operators {2 and ad I" that generalize the BRS operator
s. We define the observables and study their change under canonical transformations.
We point out analogies and differences with the formalisms of classical and quantum
mechanics. In section 4] we derive the algorithm for removing the divergences of a generic
quantum field theory, while preserving gauge-invariance. In section B we show that the
redefinitions of the parameters A\ of L.,ss do not depend on the constants that are only
introduced via the gauge-fixing. This result applies to the case of renormalizable gauge-
field theories treated with a nonrenormalizable gauge-fixing showing that predictivity
is retained. We also define the convergent physical amplitudes. In section [6 we give
some examples: Q.E.D. with an exotic gauge-fixing and the topological o-model of ref.

4 T would like to thank E. Witten for a couple of inspiring discussions on the nonrenormalizability of
this model, that gave rise to my interest in the problem investigated in the present paper.

5A similar behaviour, of course, is expected to happen in any gauge-field theory.

6That computation confirmed the Goroff-Sagnotti result [I8] that quantum gravity is not two-loop
finite.
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[16]. We also show how the usual coupling constant renormalizations and wave function
renormalizations are retrieved within our approach. Section [7l contains the conclusions,
while the appendix is devoted to the lengthy, but straightforward proof of a formula that
is needed in the paper.

2 Preliminars

In this section we introduce the notation and the basic definitions. For self-consistence,
we also report some simple arguments by Batalin and Vilkovisky [4], Bl [7] that will be
useful in the following.

The partition function is

Z[JA, KA] = /d(I) e%z(¢A7KA)+%JA¢A’ (1>

where ®4 denote the fields, while J4 are the corresponding sources. Notice that ®* is
not the minimal set of fields [4] that is usually necessary to solve the master equation.
Rather, it is enlarged to contain the classical fields ¢, the ghosts, the antighosts, the
Lagrange multipliers, the eventual extraghosts and so on. K4 is the source associated
to the BRS transformation s®* of the field ®* (it will be called the BRS source). K4
differs from the antifields ®% introduced by Batalin and Vilkovisky by a derivative of the

gauge-fermion WU:
ov

The transition from {®4 &%} to {®4 K4} is a canonical transformation [4, 5]. The
operators that we use are defined in terms of {®4 K4} rather than {®4, ®%}. The
antibrackets are L.X &Y 9% 8y
T l r l
(X ) Y) = A - A° (3)
0P4 0K,y O0K4 00
The subscripts r and [ denote right and left derivatives, respectively. When there is
no subscript, that means that left and right derivatives are equivalent. The statistics
of the field ®* is denoted by ¢4, which is an integer modulo two (zero for bosons, one
for fermions). The statistics of K4 is €4 + 1. We report some simple properties of the

antibrackets [7] that will be very useful in the calculations, namely

(X, V)] =¢e(X) +e(Y) + 1,
(X,Y) = —(=1)EOHDEOHD (Y, X), (4)
(—1)EXFDEM+D (X (Y, W)) + cyclic permutations = 0.

We also introduce the operator A, the definition of which differs from the one given
by Batalin and Vilkovisky because of the replacements of antifields with BRS sources,
namely

0. O
_ r T (_1)\eat+l

7
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The properties of A that will be useful in the calculations are ¢(A) = 1 and
A?=0, AX,)Y)=(X,AY) - (-1)FM(AX,Y). (6)
The action ¥ is supposed to satisfy the master equation
(3, %) = 2ihAX. (7)

A canonical transformation is a transformation of fields ®* and BRS sources K 4 into
new fields ®'4 and new BRS sources K, that preserves the antibrackets. As in classical
mechanics, a generating functional F(®“, K’;) can be introduced, such that

A _ OF _ OF
O =oxr Ka= gga (8)
F' is a fermionic functional. The rule for the change of the action under a canonical
transformation C is determined by the requirement that the new action ¥’ satisfies the
master equation. Our convention is that the arguments of ¥’ are still called {®4, K 4}.
The expression for ¥/(®4, K 4), that will be proved in a moment, then turns out to be

(P4 Ky) = CE(P4, Ky) = (0P, K), Ky (9, K)) + %ihln J, (9)

where J is the Berezinian determinant associated to the change of fields and sources
(which is not a change of variables in the functional integral)

9(®, K)

= det >0 1
J = det NG (10)
A useful property of J is the following [5]
AlnJ= i(ln J,In J). (11)

We adopt the following convention: any {®4, K 4}-dependent functional or operator
will be marked with a tilde when we mean that the fields ®* and the BRS sources K4
have to be replaced by ®4(®, K) and K';(®, K), respectively. Thus, equation (@) will
be briefly written as

~ 1
Y=Y+ 5@’71111 J. (12)
Similarly, A is the same as the operator A, in which the derivatives with respect to
unprimed fields and BRS sources are replaced by derivatives with respect to the primed

ones. The fact that the transformation that we are considering is canonical can be simply
expressed by the following equation

(., =(.,.) (13)
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The proof that X' still satisfies the master equation if ¥ does is immediate consequence
of the following identity [5]

AX = AX — %(X, In J), (14)

for any X. Indeed, let us consider the master equation (7)) satisfied by . Since the name
that one gives to fields and BRS sources is immaterial, it is clear that the identity

(3, 8) = 2ihAY, (15)

also holds. Using (I3) and (I4)) one has
(3,%) = 2%hAY — ih(X,In J). (16)
At this point, using (I1J), it is easy to see that definition (I2]) is chosen precisely to have
(X, %) = 2ihAYY, (17)

as desired.
Now, consider the functional integral (II). Let us perform the following infinitesimal

change of variables

P — A+ ;%A = 04 + (&4 DA, (18)

where A is some constant, infinitesimal fermionic parameter. Due to the eventual non-
linearity of ¥ in K4, (I8]) is in general a source-dependent change of variables. The
variation 07 of Z is zero and can be written in the form

0=062Z = /d<I> e i lad? {—i(zzmz — (,%)) + = Ja (@, E)} Ao (19)

2h h
The same result can be derived from the identity
0, i i A O2
— d(I) T FCOIE TN X . 2
0=/ 004 {eﬁ TS (20)

Since ¥ satisfies the master equation ([7), formula (19) reduces to the following, fun-
damental Ward identity:
< JA(®4, %) >,=0. (21)

The subscript J is to mean that the sources J are not set to zero.
Let us introduce, as usual, the generating functional W[Jy, K] of connected Green
functions, as follows:

Z[ a4, K] = exWHaKal (22)
The Ward identity (2I)) can be rewritten as
oW
— = 0. 2
Ja Ok, 0 (23)

9
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Let us also introduce the generating functional I'[®4, K 4] of one particle irreducible Green
functions, defined as the Legendre transform of W[Ja, K] with respect to J4 and with
K 4 inert:

D[4, Ka] = W[Ja(®, K), Ka] — Ja(®, K)®*, (24)
where the function J4(®, K) is defined as the inverse of
oW
(), K) = —. 25
(1K) =5 (25)
The properties of Legendre transforms guarantee that
\ aw _ 9
PR T 26)

since the BRS sources K are simple spectators. Thus the Ward identity (23]) can be
rewritten as [7]
(I,T) =0. (27)

So, whenever the action ¥ satisfies the master equation (), then the effective action T
satisfies the Ward identity (27).

3 Observables

In this section, we identify the observables and study their properties. Let us first make
a brief digression on classical and quantum mechanics.
In classical mechanics, the Hamiltonian H(p, q) (let us assume it is time independent)
satisfies the “master equation”
{H,H} =0, (28)

{., .} denoting the Poisson brackets. A time independent integral of motion O satisfies
{0,H} = (ad H) O = 0. (29)

Notice that the operator ad H is nilpotent, (ad H)? = 0. Suppose H depends on some
parameter g: H = H(p,q,g). Consider a time independent (but possibly g-dependent)
canonical transformation generated by f(p',q, g), namely

16) 0
p=73 ¢=45 (30)

The Hamiltonian H transforms into

H'(p.q.9)=H® (.¢.9).4dp.q.9),9) = H. (31)

Similarly, an integral of motion @ transforms into @’ = O. Since canonical transforma-
tions preserve the Poisson brackets, ad H-closure and ad H-exactness are converted into

10
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ad H'-closure and ad H'-exactness, respectively. We are interested in the transformation
of 24 je. aa—hgﬂ. The explicit computation gives

dg’
OH' OH [0
= — — —f, H ;. (32)
dg 9y dg
In particular, this assures that if %—H is ad H-exact, then 88—11; is ad H'-exact.
Let us now turn to quantum mechanics. The “master equation” is simply
[H,H] =0, (33)

where the square brackets denote the commutator. A (time independent) observable is
an operator O that commutes with H. A canonical transformation is performed by a
unitary operator U and

H =UHU'=H. (34)

Similarly, @ transforms into @ = O. Again, ad H-closure and ad H-exactness are con-
verted into ad H'-closure and ad H'-exactness. Moreover,
OH'  OH U OH [oU
=U—U"'+ | —~U'"YWHU ' = —+ |—U"' H|.
dg g + l@g ’ ] dg + l@g ’

= (35)
Once more it is true that if %—Z is ad H-exact, then aa_fg is ad H'-exact.

Inspired by this digression, it is simple to work out the definition of the nilpotent
operator €) that extends the BRS operator s to the space of fields and BRS sources
[8]. This will also be useful to understand the limits of the analogy among antibrackets,
commutators and Poisson brackets. Suppose ¥ depends on some parameter g. The
change of % under a canonical transformation (8) generated by F(®4, K’;, g) turns out
to be very similar to (82) and (B3]), namely

o 0% _ o
dg g dg

(36)

(the proof can be found in the appendix), where we have introduced the fundamental
operator

QO = adY — ihA, (37)

ad X being now defined by (ad 3) X = (X, ¥). We are thus lead to interpret the operator
' as the canonically transformed version of the operator €2, defined by

OX = (X,%) — ihAX. (38)

Notice that 2 acts on the space of fields and BRS sources. 2 is the candidate for the
definition of the physical quantities. The key check that we are on the right way is the
nilpotence of 2. Indeed, let us suppose that X = Qy for some y. Then,

QX =y = ((x, %) — ihAx, X) — ihA((x, B) — ihAY). (39)

11
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Using the Jacobi identity of (@) and the properties (@) of the operator A, we get

1 :
which vanishes due to the master equation ([T).
Differentiation of the master equation (7)) gives

ox )Y

This means that %—? is 2-closed. We then expect % to be V-closed. In particular, as
we shall prove in a moment, the first term on the right hand side of equation (36 is
V-closed, while the second term is trivially {2-exact. In classical or quantum mechanics,
we cannot say that %—I; is ad H-closed: indeed, a g-differentiation of equations (28) and
[B3) gives no new information. This is because (28) and (B3]) are trivial identities, i.e.
they would be satisfied by any H. The master equation (), however, has a nontrivial
content: the definition of antibrackets does not imply that it is identically trud]. This
suggests that the analogy with classical and quantum mechanics has to be taken cum
grano salis. This is a luck, rather that a handicap, since we shall be able to prove useful
properties that have no counterpart in classical or quantum mechanics. In particular,
the nontriviality of (27)) will be extremely important in the following.

The proof of formula (B6) is a little involved, although conceptually rather simple [it
is only a matter of change of variables and it can be obtained by mimicking the analogous
steps that permit to prove (32)) in classical mechanics|. That is why we postpone it to
the appendix. For the moment, the reader should be satisfied with the plausibility that
is suggested by the similarities with equations ([B2]) and (BH) and the fact that Q' is the
only reasonable nilpotent generalization of the BRS operator s to the space of fields
and BRS sources. The minus sign in (36]) can be promptly checked by considering a
canonical transformation infinitesimally close to the identity, i.e. a transformation with
F(®4 K')) = ®AK!, + eR(P4, K')), ¢ being a constant infinitesimal parameter.

Let us prove in detail that if O is {-closed, then O is Y-closed. In particular, this
assures that g—? is V'-closed. Indeed, we have

Q0 = (0,%) —ihAO = 0. (42)
Changing name to fields and BRS sources wherever their appear, we also get
(O,%) —ihAO = 0. (43)
Using (12), (I3)) and ([I4), we get
(0,%) —ihAO = YO = 0. (44)

"As a matter of fact, the definition of antibrackets only implies that (F, F') = 0 for any fermionic F'.

12
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Thus, if O is Q-closed, it is natural to define its variation under a canonical transformation
according to .
O'=0+ QA (45)

In general, A can be chosen to be zero. Notice, however, that for O = % one has
A= —%—I; # 0, according to (36). With A = 0, (A3]) is reminiscent of the usual quantum

mechanical rule O’ = UOU~! = O.
We now prove that if O is Q-exact, then O is (V-exact. Let x be such that O = Qy.
We have
O = (x,%) —ithAy. (46)

Changing name to fields and BRS sources wherever their appear, we also get

O = (%, %) — ihAy. (47)
Using (I2)), (I3) and (I4)), we finally obtain
O = (v,%Y) —ihAx = 'Y, (48)

as desired. Consequently, (0’ is also ¥-exact. A corollary is that if %—? is (2-exact, then

aa_z’ is 2'-exact. This fact will be very useful in the following.

The formulee for the change of the functional I" under a canonical transformation can
be also conjectured by analogy with the classical and quantum mechanical formulze. In

particular, (3I]) and (34) suggest

I'=T. (49)
Moreover, ([B2) and (B3] suggest
or'  or (oF ar OF
8 (=L _aards
5= a () =5~y o

Although formula (49)) is very natural and can be easily checked in the case of canonical
transformations infinitesimally close to the identity, we give it only as a conjecture. We
shall be able to prove our results independently of (49). Equation (50), instead, can be
simply proved by taking the g-derivative of (49) and mimicking the standard arguments
that are contained in the appendix. However, it must be kept in mind that it depends
on the validity of ([49)), that we leave without proof. A direct consequence of (B0) is that
if g—l; is ad I'-exact, then %—I; is ad I'V-exact.

Moreover, a g-differentiation of (27]) shows that g—l; is ad I'-closed.

Let us now prove that if O is Q-closed, then < O > is ad'-closed (the subscript J
means that the sources J are not set to zero). We start from

9,20

0=< Q0 >;=< 9BA 0K, > (51)

9,0 95 9,0 9T (Cpyeast
ODA DK, 0K, 004
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By performing the change of variables

_ax

507 A 52
(A being a fermionic infinitesimal parameter) in the functional integral < O >, one
finds _
87’0 8l2 1 012

<W%>J:_ﬁ<0% > Ja. (53)

Moreover, with an integration by parts one can show that

1 0,0 9% v 0,0 ea
<AO>J—ﬁ<%@>J+ﬁ<%>J Ja(—=1)%4. (54)

It is thus possible to write (BII) in the form

i o2 0,0
—_ il —(=1)a
0 h<08KA > Ja—(—1) <8KA >; Ja
0, <O >y i oW 0, <O >y
S O BBy IS0 P L O et N
GOkt IR, AT T T e (59)
where we have used the Ward identity (23]) for W. Using
0, <O >y 0, <O >; 0, <0>; 0.Jp
OKa |, OKs |y 0Jp x OKalg
and some standard manipulation, one gets
0. <O
0=(<0>,T)~ """ (J5T)= (<0 >,.T), (57)
0Jp K
which is the claimed result. We have used the fact that
(JB,T') =0, (58)

as one can prove by differentiating (27) with respect to ®Z. Notice that a nontrivial
formula like (B8] is once more consequence of the nontrivial content of (27)). No similar
formula can be derived in classical or quantum mechanics.

With a similar argument, one can prove that if O is Q-exact, then < O >; is ad I'-
exact.

We are thus allowed to define an observable as an ad I',-closed finite functional O,
where 'y, denotes the finite effective action (corrected at any loop order in h). We
shall say more about this definition of observable in the following. It is the analogue
of the classical concept of invariant of motion or the quantum mechanical concept of
observable. Notice that O is defined up to ad I'.-exact terms. The nice property is that
an ad I'w-exact functional A is zero on shell (i.e. at J4 = 0 and K4 = 0 or, equivalently,
at ®4 = 0 and K4 = 0). This is because if A is ad I'y,-exact, then there exists a Q such

that A = 22| J4(=1)".

14
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4 Removal of divergences in a generic gauge field
theory

Let us now consider a generic nonrenormalizable gauge field theory. The classical La-
grangian L.,ss will be supposed to be the most general gauge-invariant one. The con-
stants that multiply the possible gauge-invariant terms of the classical Lagrangian (infi-
nite in number) will be denoted by A.

As we anticipated in the introduction, we suppose that the zero-th order action Y is
linear in the BRS sources K,

Y0 = Letass(@) + sU() + K450, (59)

and moreover that the functional measure is BRS invariant, i.e. AYy = 0.

The algorithm that removes the divergences is derived by induction. Quantities with
a subscript k refer to the theory in which the divergences have been removed up to the
kt-loop order (for example Zj, Wy, 'y, ¥p, ...).

The inductive hypothesis is the following. We assume that the operator £, _; that
removes the (n — 1)"-order divergences (when the lower order ones have already been
removed) is a transformation acting on A and {®, K'} in the following way

Ln—l)\ = A + 511—1)\7 (60)
Lo 1{®4 Ka} =Coa {04, Ka},
where C,_; denotes a local canonical transformation (C,_; = 1+O(h" ")), while 6,_ 1\ =
O(R"™1) denote the (n — 1)*-loop order corrections of the constants A. The action of
L,_10n X, o1is

En_lzn_g(q), K, )\) - Cn_lzn_g(q), K, )\ + 5n—1>\)- (61)

The actions on W, _5 and I',,_5 to give W,,_; and I',,_;, respectively, are direct conse-
quences of ([GI]).
Let us define
Ru1=Lyq10--0L; =Ly 10R,_a. (62)

R,_1 acts on Xg, Wy and I'y and gives >,,_1, W,,_1 and I',_;. It removes the divergences
up to the (n — 1) loop order. In general, R,,_; is not directly defined on X and {®, K}.
It is a composition of redefinitions of A and local canonical transformations on {®, K'}.
Notice that Ci, L and Ry preserve locality Vk. So, ¥ is local.

We are thus assuming that the divergences up to the (n — 1)"*-loop order have been
corrected by a set of redefinitions of the constants A and local canonical transformations
of fields and BRS sources. This guarantees that >, _; satisfies the master equation, since
Yo does. To show this, let us go back to the proof that a canonical transformation
preserves the master equation [see formulee (IH]), (I8) and (I7)]. We have to improve it
with a redefinition of the constants A. This is extremely simple. Consider (IH). It was
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derived from (7)) by changing names to fields and BRS sources (from unprimed to primed
objects). A similar identity can be derived by changing names to fields, BRS sources and
the constants A (i.e. replacing A with A + d\). None of the remaining steps of the proof
gets affected. With this simple improvement, all the properties that hold for canonical
transformations can be extended to Lj-transformations, apart from those concerning the
derivatives with respect to ¢ (indeed, the parameters g can also enter in the redefinitions
of A). So, for example, L;-transformations preserve ()-closure and Q-exactness, as well
as the Ward identity (27) and so on. Consequently, the same holds for any R and, in
particular, for R,,_;. We are going to prove that the n'*-order correction is of the same
type. In other words, we have to define suitable £,, and R, operators.

When we speak about redefinitions of the parameters A\, we are assuming that the
classical Lagrangian L.,ss is the most general one, i.e. that it contains any possible .
Indeed, if we miss one, we cannot redefine it. So, when we want to consider a classical
Lagrangian with some missing terms, we have to set the corresponding constants A to
zero at the very end. The present point is a key one: when the nonrenormalizability
is only due to the gauge-fixing, L..ss is not the most general classical Lagrangian and
one has to be sure that the missing terms do not appear when applying the correction
algorithm.

Now, we have a functional I',,_; that is convergent up to the (n — 1)*-loop order.

Let us call I' g;)) its n'*-order divergent part. T g;)) is a local functional. We want to show

that we are able to remove ngg with a canonical transformation C,, = 1 + O(h") and a
redefinition A — A+ J, A = A+ O(R") of the constants A. This reproduces the inductive
hypothesis up to the n'*-loop order. As a consequence of the inductive proof, there will
exist a R-transformation (Ra., to be precise) that is able to remove all the divergences
of the theory.

Since Y, ; satisfies the master equation ([7]), then I',_; satisfies a Ward identity
analogous to (27), namely

(Tp—1,T—1) = 0. (63)
Taking the divergent part of the n*-loop order of this expression, we get
(T So) = 0T = 0. (64)

Notice that o is nilpotent: o2 = 0, due to (X, Xy) = 0. (64 is a very useful characteriza-

tion of F[(i?g. As a matter of fact, the general solution of this equation on local functionals
of zero ghost number [1} 2 3], 19, 20] is

I = g™ () + (R™, %), (65)

for some local gauge-invariant functional G™(¢) depending only on the classical fields
¢ and a suitable local functional R(™ (®4, K,). For Yang-Mills theories, this statement
was conjectured in ref. [I9] and proved in detail in ref. [20]. The analogous statement for
higher derivative quantum gravity was assumed without proof in ref. [3]. In this paper we
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assume the same property without proof for our gauge field theory. If formula (65]) were
violated, for example if G™ depends on more fields than the classical ones, this could
simply mean that one has to enlarge the definition of “classical fields” and “classical
Lagrangian” in order to include G™-type functionals. Serious troubles, instead, can
appear if G cannot be made independent of the BRS sources K: some arguments of
our derivations should be reconsidered. See also [21].

g (")(¢) has the same form as L, of course, since we are assuming that the classical
Lagrangian is the most general one. So, G™ is responsible for the corrections d,\ of the
constants A. In other words, there exist suitable §,A such that the corrected action
Y1 (®, K, X + 6,)\) gives a I-functional whose n*-loop divergent part is o-exact: G
is removed from Fg;z and only (R™, Y) remains. This last piece can in fact be removed
by a local canonical transformation C, with a generating functional equal to

FM(® K') = ®*K', + R™(®, K'). (66)

Notice that in the argument of R™ the BRS sources are K’ and not K. In this way, it
is easy to check that

ih
Y = CnXp 1 (B, KN+ 6,0 =20 + — 5 InJ, =%, — I+ om"), (67)

where now the tilde on >, _; means not only that the fields and BRS sources are substi-
tuted by their primed versions, but also that the constants A are substituted by A+ d,\.
In deriving (67), we have used the fact that, since R™ is of order A", (8) give

O = oA+ B L o(ptY), Ky = K — 2B 4 o). (68)

Moreover, In J, = O(R"). We conclude that I, is convergent up to the n'*-loop order.

The composition of the n'*-loop order correction £, with the operation R,_; of
removal of the lowest order divergences defines an operator R,, = L,, o R,,_1, that acts
on the zero-th order theory and removes all the divergences up to the n*-loop order.
Moreover, L,, has the same structure as £, _1, namely it is a redefinition of the constants
A and a local canonical transformation C,,.

According to the results of the previous section, we have shown that there exists
an operator R, that is able to remove all the divergences, while preserving suitable
extensions of gauge-invariance, namely (). -invariance on local functionals and ad .-
invariance on their average values (which are also generalizations of BRS-invariance).

Finally, notice that the canonical transformation (66]) is not uniquely fixed. Any
higher order correction can be introduced without affecting the results. Moreover, due
to (65]), R™ is defined up to o-closed local functionals 7™, that can also be of order A"

5 Predictivity with a nonrenormalizable gauge-fixing

The purpose of the present section is to improve the argument of the previous one in
order to show that when a renormalizable theory is treated with a nonrenormalizable
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gauge-fixing, predictivity is retained. Now, the classical Lagrangian L., is not the
most general one, since it has to be renormalizable. The parameters \ are finite in
number. The k-dependence is entirely due to the gauge-fermion W. So, the previous
argument can be adapted to the present case, only if we are able to prove that G™ (@)
is k-independent, so that it is only made of renormalizable terms, i.e. terms contained
in the starting renormalizable classical Lagrangian L.ss(¢, A). Indeed, only in that case
G™ can be absorbed with redefinitions d, A of the parameters A of £qss-

Again, we proceed by induction. Let us suppose that the algorithm works well up to
the (n — 1)"-loop order, i.e. that Vk = 1,...n — 1, £, is made by x-independent redefi-
nitions oA of the parameters A and a canonical transformation C;. Formula (36]) for the
change of % under a canonical transformation is extendable to any Li-transformation,
k=1,...n—1, if we take g = k, since the correction of the parameters X is k-independent

by inductive hypothesis. So, if Pory g Qr_1-exact, then 2= is Qi-exact. A similar prop-

ok ok
. . DI
erty extends to R,,_1: if % is ()p-exact, then % is €2,,_i-exact.

Notice that in a renormalizable gauge-field theory that is gauge-fixed with a non-

renormalizable gauge-fixing, % is BRS-exact. As a matter of fact,
20 = Letass (@, ) + sV (P, k) + K 4504, (69)

U being the gauge-fermion, and so,

0% ov
— g 70
ok ok (70)
Since W is independent of the BRS sources K, we can also write
0% ov ov
—==—,%0 ] = Q— 1
Ok < Ok’ 0) "ok’ (71)
2y denoting the zeroth order (2-operator. Since % is local and Qg-exact, then (36) and
the above remarks assure that % is local and 2, _i-exact. Let x,_; be such that
azn—l
= Q1 Xn-1- 72
e 1Xn—1 (72)

Since x,_1 = Rn_lg—i’, we see that x,_1 is a local functional. (72]) is sufficient to prove
that % is ad I';,_1-exact, which can be obtained following the same steps of the proof
that if O is Q-closed, then < O > is ad I'-closed.

Indeed, let us start from

aI/Vn—l - azn—l

I R J 1Xn—1 =J (73)
By performing the change of variables
alzn—l
5P = A 74
0K, 7 (74)
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in the functional integral < x,_1 >, one finds a formula analogous to (53]), with x,,_; in
replacement of . Moreover, with an integration by parts, one can prove the analogue
of (B4)). It is thus possible to write ([73)) in the form

aVVn—l o 87’ < Xn—1>J
ok n 8KA

Ja(—1)74. (75)

Now, the definition of T',,_; [see (24])], permits to write

arn_ 8Wn— a?“ n—
5 1 _ 1 _ O S Xn1 2J Ja(=1)%4. (76)
R Ok 1K 0K 4 J
Using the analogue of (56) and (58]), one gets
81—Wn—l
= n— Lnet). 7
o (< Xn-1 >y 1) (77)

We conclude that a%j;l is ad I',,_1-exact.

Let us call S,_1 =< xn_1 >s. Sn_1 is the average value (at nonzero sources .J)
of a local functional. Notice that S,,_; is determined up to additions of adI',,_;-closed
functionals. We introduce the additional inductive hypothesis that S,,_; is finite up to
the (n — 1)"-loop order. Of course, this hypothesis is satisfied at lowest order: Sy =<
Xo >7=< g—i’ > ;= finite + O(h). We shall have to prove that the additional hypothesis
is reproduced to the n'* loop order, i.e. that S,, =< x, >; can be chosen finite up to
order h".

Let Sé?g denote the n'"-loop order divergent part of S,_. Sc(l?g is local, since we are
assuming that all the subdivergences have been removed. Let us focus on the n'*-loop
order divergent part of equation ([77), namely

ors)

2 = (0, Tiia) + (Sii» o). (78)
On the other hand, (63]) gives
aryy oG ) 0% OR™
o~ on T\ ) T\ Tk ) (79)
so that we can write
aT_(X07Fdiv>_ B, 2 + (-, Xo). (80)
Using (71]), we get
oG ™ .
2= = 00.G") + (. o). (81)
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Now, since xo and G™(¢) do not depend on the BRS sources K, we have
(x0,G™) =0, (82)

and we can conclude that a%_f:) is o-exact and that it is equal to the action of o on a local
functional. This implies that it can only be zerdd. This proves that the redefinitions 9§, A
of the constants \ are k-independent.

The k-independence of d,A generalizes the well-known gauge-independence of the
coupling constant renormalization. See also section [6] for a comment about this fact
within Yang-Mills theory treated in the usual way.

As a consequence of % = 0, we can write

0%
"~ = Qn n 83
5 X (83)

and ar

= = Snarn ) 84
= (5,.T) (31)

being S,, =< x,, >,. Formula (30) gives

HF ™)

n — ~n— - 85
X Xn—1 I (85)

(the tilde, as usual now, means that the parameters A have to be substituted with the
new ones and the fields and BRS sources have to be substituted with the canonically
transformed ones). Moreover, S, =< x, >;= S,_1 + O(R"). Consequently, S,, is surely
finite up to order A""!. In order to fully reproduce the inductive hypothesis, we have to
prove that S,, can be chosen finite up to order A".

Let Sc(lzj) denote the n'* loop order divergent part of S,,. Sc(lzj) is local, since the
subdivergences vanish by inductive assumption. Taking the n'* loop order divergent part

of (84)), one has
oS = 0. (86)

We shall give two different arguments for removing 85’23 . The first method is based
on the fact that S, is defined up to adI',-closed functionals, that are averages of €,-
closed local functionals, while the second method is based on the fact that the generating
functional F(™ of (G6)) is defined up to o-closed functionals 7™ = O(h™).

Let us begin with the first method. It is fundamental to be able to extend Sé?g to an
2o-closed local functional SC(ZZ))/ by adding higher order terms. Were Sc(l?v) of ghost number
zero, this would be very easy: Sé?g would be of the form

8% = f(¢) + (h, %) = f + ah, (87)

8See [20]. As a matter of fact, one can always assume that, in formula (G5), G does not contain any
gauge-invariant term of the form (local functional, ¥y). This simply amounts to a redefinition of R™.

- ) . . . . .
If this is the case, then 6%’1 is also a sum of gauge-invariant terms, none of which can be written as
(local functional, ¥).
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where f is a gauge-invariant local functlonal of the classical fields ¢ and h 1s local. Of
course, f and h are of order A", as de Then, the Qy-closed extension of de

dw = f + Q h = de + O(hn+1> (88)

However, 35?3 has ghost number —1 and it is not simple to estabilish the cohomology
content of o on ghost number —1 local functionals. Nevertheless, due to g = 0 — ihA,
one can notice that at least in a dimensional regularization framework, Sc(l?v)/ = Sc(l?v) is
trivially Qg-closed. Then, we know from section [3] and the remarks of section Ml that
the operator R,, permits to find a local €2,,-closed extension RnSC(l?v)/ = Sc(l?v) + O™ of
S Finally, we know from section [3 that

S, =< R, ST >, (89)

is adI',,-closed. Moreover, S, = Sc(l?v) + O(A™Y). Consequently, S, can be safely sub-
tracted from .S,,: this cancels the divergent part Sc(l?v) and preserves (84]). The subtraction
of §,, from S, corresponds to a subtraction of RnSC(l?v)/ from x,: (83) is also preserved.

The second method does not require any restriction on the regularization technique.
We know that F'(" of formula (G6)) is defined up to o-colsed functionals 7. The addition
of such T™’s to F™ only changes ¥,, and T,, to order """ and neither affects (@]) nor
(84). However, due to (83), it affects x,, and also S, =< X, >;. Moreover, 7™ has
ghost number —1: it is thus a good candidate for our purposes. Let us choose T to
be O(h™) and divergent. (85) assures that when introducing a 7™ in F™ y,, goes into
Yy — L (T™, x0) + O(A™*1") and that 35’23 changes according to

Ok
s _y gl _ or® (T™, o) (90)
dw div Ok » X0)-
oT™ =0 also implies
I(aT™) or™)
= = 7™ 1
0 Ok o Ok _'_( 7X0) ’ (9 )

as it must be, due to (86). One would like to find a 7™ such that the right hand side

of (IEZII) is zero. This can be done perturbatively in x. Let us start with 7 = Hde
o(kS) = 0. Then

0Sii

K

SH = —# R(SE) x0) = KTO. (92)

SC(lZJ) has not been set to zero, however its power expansmn in K starts now with order
one. Clearly, c7™ = 0, due to (86). Let us now add % T(l to 7. We have

oTWw
St =5 (T + (T000)) =272 (93
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Again, 0T? = 0. Moreover, Sc(l?v) has become quadratic in k. Then we can add %37(2)

to T and go on: 35?3 can be made of arbitrarily high order in s (always of order n in
h) and so we can conclude that it can be made to vanish, as desired.

A key remark, now, is the following. The proof that we have made can be extended
to any nonrenormalizable gauge field theory, to show that if some parameter g (not
necessary of negative dimension in mass units) only appears in the gauge-fermion ¥, but
neither in the classical Lagrangian £.,ss(4, A), nor in the BRS variations s®4 of the fields
®4, then the order by order redefinitions of the parameters A of Luass (now infinitely
many) is g-independent and the derivative of Iy, with respect to g is ad ['-exact.

This is useful for the definition of the observables of a renormalizable field theory. Let
{Oi(¢)} be a basis of local gauge-invariant operators, constructed only with the classical
fields ¢. Let us substitute the classical Lagrangian L qss(¢, A) with

nga)ss(qbv >\7 5) = Eclass(¢7 >\) + /Bz(l)z(¢) (94)

The (; can be point-dependent. For simplicity, such a dependence will be undestrood.
The Lagrangian (94]) is the same as a nonrenormalizable Lagrangian, so that the correc-
tion algorithm permits to define a finite functional

I'9(®, K.\ x, B) (95)

such that its derivative with respect to x is ad I',-exact and the order by order redef-
initions of A and /8 are k-independent. The only (fundamental) difference with a true
nonrenormalizable field theory is that (; are not true coupling constants, but artificial
parameters that permit to define the quantum extensions (’)Z-(q) of the observables O;, that
are

or®)
09, K)= == | . (96)
aﬁz B8=0
The quantum generalization of the amplitude < O;, ---O;, > is given by
orT®)
Aij i = ——— . (97)
' 9Bi, - -~ 0P, B8=0, =0, K=0
We know that, on shell,
or®)
= =0 98
e (98)
and so we conclude that the on shell amplitudes are k-independent, namely
OA;, ..i
—=0. 99
e (99)
Differentiating (I'®, I'®)) = 0 with respect to 3; and setting 8 = 0, we get
ad T O = (09 T') =0, (100)
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where ['o, = T®|5_0. In other words, OZ-(q) are quantum observables in the sense defined
in section 3l Moreover,

or®) oW B) on®)
o = ( 35 ) :( 3% ) =<5 > (101)
vleK /) g v UK (= t B=0

The differentiation of the master equation for £¥) with respect to 3; implies

(8)
o, ¢
op;

=0, (102)
£=0

so that the quantum observables OZ-(q) are average values of {2, .-closed local functionals,
again in agreement with the definitions developed in section [Bl

Concluding, when the nonrenormalizability is only due to the gauge-fixing, the phys-
ical amplitudes depend on finitely many parameters and so a finite number of measure-
ments is necessary to determine uniquely the theory.

Again, the previous conclusions can also be extended to a true nonrenormalizable field
theory: the physical amplitudes can depend on infinitely many parameters, nevertheless
they cannot depend on the parameters that were introduced only through the gauge-
fixing, i.e. the independence from the gauge-fermion W survives the subtraction algorithm.

6 Examples

In this section we examine some examples of renormalizable field theories that are treated
with a nonrenormalizable gauge-fixing. The first example is pure Q.E.D. (to further
simplify things, we consider the case of space-time dimension two): it is a free theory
and so there is no nontrivial physical amplitude. Let us regularize with the dimensional
technique. We choose the gauge-fixing

0, A, + 1(9,A,)(9,4,) = 0. (103)

This is a continuous deformation of the usual gauge-fixing 9,4, = 0, so that we expect
the same physical results. The BRS algebra is

sA, =0,c, sc=0,

se=b, sh=0, (104)
with obvious notation. We choose the following gauge fermion ¥
U= %c(b +20- A+ 2k(0,A,)%), (105)
so that the BRS action is
Yo = Y + s + K sA + K.sc + Kzs¢ + Kjsb. (106)

4=
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Notice that the Lagrange multiplier b is not integrated away. A, and b must be treated
as a whole to define a nonsingular propagator. One then checks that there is propagation
from A, to A, and from A, to b (and viceversa), but no propagation from b to b. There is
no dependence on K. and Kj, since sc = sb = 0. Moreover, there is no radiative correction
to the other BRS transformations, since they are linear (correspondingly K4sA + Kzs is
quadratic). This implies that the linear dependence of the action on the BRS sources is
radiatively preserved. Let us rewrite ¥y in a more explicit form, namely

Yo = %AMDAM + %(a - A)? + %bQ +5(0- A+ K(9,A4,)%)

—¢(0c¢+ 2k0,0,c0,A,) + K'0,c + Kb. (107)

Let us consider the one loop amplitudes with external photonic legs. They are the
sum of two diagrams: in one of them A, and b circulate in the loop, while in the other
one, ¢ and c¢ circulate. It is simple to check that these two diagrams exactly cancel, so
that the amplitude is identically zero, independently of the number of external photonic
legs.

Next, consider the one loop diagram with two external b-legs (of momentum p and
—p): there is a divergence of the kind

1
— k2. (108)

This means that it is necessary to introduce a counterterm of the form

%n%mb. (109)
We conclude that the Lagrange multiplier becomes “propagating”. Counterterms of the
form #3000 and x*b(9,b)* are also required, so that the corrected action is not even
quadratic in b. That is why, for the simplicity of the computation, it is preferable to
avoid integrating b away.

Instead, starting from a Lagrangian >, in which b has been integrated away, namely

S %AMDAM kD A(D,A)? — %ﬁ((auA,,)?)?
—¢(0c + 2k0,0,c0,A,) + K40, c + Kb, (110)

it is no more true that the one loop amplitudes with only photonic external legs

< Ay (p1) -~ - Ap, (Pn) > (111)

one loop

9Strictly speaking, one should say that the condition of linearity in the BRS sources can be radiatively
preserved, i.e. that this condition is compatible with the subtraction algorithm. Indeed, if this restriction
is not specified, one could introduce arbitrary finite nonlinear terms.
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are zero. Nevertheless, it is true that the physical projections

P1pi P1uy Prpn Prvy,
<5M1V1 - M17> T (5unun - ui) < Ay, (pl) e 'Aun(pn) > (112)

pi kp?

one loop

vanish. Check, for example, the case n = 2.
Let us now couple fermions to the electromagnetic field, by adding to ¥y the terms

(@ + A + Dsip + syD. (113)

The BRS algebra is B B
s = —ch, s = ci. (114)

The nonlinearity of these transformations gives rise to nontrivial radiative corrections to
them together with the lost of linearity in the BRS sources. As a matter of fact, although
it is simple to check that there is no divergent one loop diagram with both D- and D-
external legs, nevertheless two loop divergent diagrams with both D- and D-external legs
do exist.

Analogous considerations apply for non-abelian Yang-Mills theory.

Let us now describe where, in our description, the usual coupling constant and wave
function renormalization come from, when a renormalizable gauge-field theory is treated
with one of the usual renormalizable gauge-fixings. For simplicity, we consider pure
non-abelian Yang-Mills theory. In the usual approach, three independent renormaliza-
tion constants Z are needed: one for the coupling constant g, one for the wave-function
renormalization of the vector A, and one for the ghosts-antighost wave-function renor-
malization. On the other hand, in our approach the removal of divergences is performed
by a redefinition of the parameters that multiply the gauge-invariant terms of the starting
classical Lagrangian (in the present case there is only one such term, namely F s let
us call A the constant in front of it) and a canonical transformation of fields and BRS
sources. If the gauge-fixing is renormalizable, the canonical transformation is linear, i.e.
the fields @4 and the BRS sources K 4 are simply multiplied by some constants, which we
call Zga and Zk ,, respectively. The requirement of preservation of antibrackets implies
ZoaZi, =1 VA. This reduces the number of independent Z-factors for fields and BRS
sources to a half, namely 4 (those for A,, ¢, ¢ and b, for instance). However, since Kb
and b0 - A are not radiatively corrected, we have Z, = Z; = ﬁ Thus, we remain with
three independent Z-factors: those for A, and ¢ and that for \. The correct counting is
thus retrieved and one can also check that these three Z-factors are indeed sufficient to
produce the usual coupling constant renormalization and wave function renormalizations.
Notice that there is no redefinition of the coupling constant ¢ in our description; indeed
the usual redefinition of g is recovered from the redefinitions of A and A,. Precisely,
the usual renormalization factor Z, for the gauge-coupling constant g results to be equal

to Z 12, Thus, the gauge-independence of Zy, proved in section [ is nothing but the
familiar gauge-independence of Z,.
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Let us now consider the topological o-model formulated in [I6]. It is an irreducible
gauge-field theory and its BRS algebra [formula (13) of [16]] can be written, after a
natural redefinition of the Lagrange multiplier bL, in the form

s¢ =¢', s&=0,

. . . 115
s¢, = b, sbj, =0. (115)

The simplicity of the BRS algebra assures that linearity in the BRS sources is preserved
and that there is no radiative correction to the BRS transformations. Thus, the ob-
servables that were listed in [16] are directly promoted to quantum observables. The
expression G appearing in formula (65) is zero, since any gauge-invariant functional
(i.e. a topological invariant) is perturbatively trivial. This implies that there is no re-
definition of the parameters A. The expression R™ appearing in the same formula (653)
is independent of the BRS sources. This implies that the canonical transformation that
absorbs the divergent terms leaves the fields invariant and only changes the BRS sources
according to

OR™)

0Ky =— . 116
AT oA (116)
Formula (2]) shows that this is precisely a redefinion of the gauge-fermion W:

Uy =V, =0, , — R™. (117)

We conclude that the removal of divergences simply reduces to a redefinition of the
gauge-fermion and thus has no physical consequence.

The nonrenormalizability of topological fields theories coming from the twist of some
N=2 nonrenormalizable quantum field theory is thus turned into a positive feature: it
shows that a suitable subset of the physical amplitudes of a nonrenormalizable N=2
quantum field theory is in any case predictive and physically well-defined.

7 Conclusions

Apart from eventual applications, the investigation about the removal of divergences
in a nonrenormalizable gauge-field theory turns out to be enlightening rather than ex-
travagant. The usual theorem of renormalizability of Yang-Mills theories is not, strictly
speaking, a renormalizability theorem, since our improved version works for any (eventu-
ally nonrenormalizable) gauge-field theory. Rather, it is a theorem on the compatibility
(up to BRS anomalies) of gauge-invariance with the subtraction algorithm, a fact that is
fundamental for unitarity. When combining that theorem with power counting, one can
determine the renormalizability or nonrenormalizability of the theory. This is not the
whole story about predictivity. As a matter of fact, when the counterterms are infinitely
many, one has to determine how many of them are nontrivial (i.e. non “BRS exact”): if
the nontrivial counterterms are infinitely many, then the theory is not predictive. If the
nontrivial counterterms are finitely many, then the theory is predictive. We have shown
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in detail that when nonrenormalizability is only due to the gauge-fixing, predictivity is
preserved, a fact that is naturally expected. One is lead to wonder whether there are
more general cases of predictive nonrenormalizability. This could require a revision of
our idea of physically acceptable field theories.

Finally, the simple description of the removal of divergences as a redefinition of some
parameters together with a canonical transformation of fields and BRS sources opens the
possibility that in some simple models such a set of redefinitions, or, in other words, the
identification of the correct variables and the correct parameters, is derivable from first
principles with a synthetic argument, i.e. without any analytic computation.
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Appendix: Proof of formula (36)

We want to prove formula (36). We find it convenient to use the notation of ref. [22]
and some of the formulae proven there. Let us define

A _ _9oF A _ _QoF
M p = aKf46q>B> NB™ = paborr, 118
K OK',> AB = 934955
The statistics are as follows
e(MAg) =e(Npg?) =ca+ep, e(FAB) =c(Fup) =ca+ep+1. (119)
The following rules for transposition hold:
NP = MPA(-1)aCr s, (V)7 = (M2 (-1aeot(120)
The differentials of ® and K are
aq)/A
A" = MApd®P + FAPAK), + a—dg,
g
0K
dK o =d®PFa + dK,MP 4 + 8—Adg. (121)
g

As a convention, when there cannot be any misunderstanding, we do not specify the
variables that are taken to be constant in a partial derivative. It is understood that the
differentiated function is considered as a function of its natural variables: F', ® and K
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are functions of {®, K', g} [see (§)], & and ¥’ are functions of {®, K, g}, ¥ is a function
of {&', K’ g}, and so on.
Let us differentiate (I2]) with respect to g at constant ® and K.

)YENG)S P4 9x 0K,y 9% dln Jz
= —(9'(?,K),K'(P,K)) + +ih ———
dg  Og 99 lox oP'A 99 |g i OK Jg o
B (122)
Now, %(@’(@, K),K'(®, K)) is the same as %—3 Let us define
OF (P, K’
5@, K, g) = 2210 (123)
dg
(I21)) gives
S 0,98 08 S
== = M~hF,. 124
oPA |, YA, 0D gep M) (124)
Moreover, (8) gives
S OKp,.  _1.p
=—(M . 125
aq)/A . ag ( ) A ( )
On the other hand, the second of (IZI]) permits to write
K} K
OKB| e, = —a—A, (126)
99 |px dg
so that we conclude 9 oK
A
il B . (127)
oP'A |, g oK
Following similar steps, one can prove
S 094 OKp 094
_ _ M—l B FCA — ) 128
a[(f4 o ag 89 ( ) C ag - ( )
This formula, together with (I27) and (I3), permits to rewrite (I22) in the form
Y 9% - 1
0% _ 9% g5y (129)
dg g 99 |, «
Using (12) and (I4]) we also get
> 9% - InJ3z
0% _ 9% g5y 4inas—indAs— IS . (130)
dg g 9 |, .
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Our thesis will be proved if we are able to show that

- InJs
Ag=ollEl (131)
dg
oK
Now, the chain rule gives
N ) o0, [ OK'
s (), o (51
0Ky \ 094, ) |o oK', \ Og 0.5 ) |g
0, [ OK' 0,08 o [ OK! 0. K
= (=) . AR . A
008 \ 09 |4k K@KA o OKp \ 99 |4 ¢8KA o
_ (_l)aA ﬁ 8TK1/4 8T(I)B + (_1)6,4 ﬁ 8TK,,4 arKB
B dg \ 008 | o.K 0K | dg \ 0Kp |4 oK 0Ky |4
(132)
With the help of (I21]), one can prove that
orK’ _ B O . A _
sre |, = (V S a;[((f o Np#* — Fpe(M~1)C  FPA, )
i K= —(N"Y)4Fep, %z?f o —(M~1)B FCA,
Moreover, noticing that )
Jz =det M1, (134)
and that )
dlnJz = (=1 AN (N7, (135)
we conclude
1
AS: 81nJ2 _I_ (_I)EB+1(M_l)BCFCA(N_l)AD 8FDB (136)
9 @K % lox

The last term vanishes due to symmetry properties and the statistics of the various
factors. This concludes the proof.
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