Recent theorems

Recent Papers

Background field method

Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers, in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.


Phys. Rev. D 93 (2016) 065034 | DOI: 10.1103/PhysRevD.93.065034

arXiv: 1511.01244 [hep-th]

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages



1. Functional integral

  • 1.1 Path integral
    • Schroedinger equation
    • Free particle
  • 1.2 Free field theory
  • 1.3 Perturbative expansion
    • Feynman rules
  • 1.4 Generating functionals, Schwinger-Dyson equations
  • 1.5 Advanced generating functionals
  • 1.6 Massive vector fields
  • 1.7 Fermions

2. Renormalization

  • 2.1 Dimensional regularization
    • 2.1.1 Limits and other operations in $D$ dimensions
    • 2.1.2 Functional integration measure
    • 2.1.3 Dimensional regularization for vectors and fermions
  • 2.2 Divergences and counterterms
  • 2.3 Renormalization to all orders
  • 2.4 Locality of counterterms
  • 2.5 Power counting
  • 2.6 Renormalizable theories
  • 2.7 Composite fields
  • 2.8 Maximum poles of diagrams
  • 2.9 Subtraction prescription
  • 2.10 Regularization prescription
  • 2.11 Comments about the dimensional regularization
  • 2.12 About the series resummation

3. Renormalization group

  • 3.1 The Callan-Symanzik equation
  • 3.2 Finiteness of the beta function and the anomalous dimensions
  • 3.3 Fixed points of the RG flow
  • 3.4 Scheme (in)dependence
  • 3.5 A deeper look into the renormalization group

4. Gauge symmetry

  • 4.1 Abelian gauge symmetry
  • 4.2 Gauge fixing
  • 4.3 Non-Abelian global symmetry
  • 4.4 Non-Abelian gauge symmetry

5. Canonical gauge formalism

  • 5.1 General idea behind the canonical gauge formalism
  • 5.2 Systematics of the canonical gauge formalism
  • 5.3 Canonical transformations
  • 5.4 Gauge fixing
  • 5.5 Generating functionals
  • 5.6 Ward identities

6. Quantum electrodynamics

  • 6.1 Ward identities
  • 6.2 Renormalizability of QED to all orders

7 Non-Abelian gauge field theories

  • 7.1 Renormalizability of non-Abelian gauge theories to all orders
    • Raw subtraction

A. Notation and useful formulas

Read in flash format


We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.


Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

arXiv: 1311.2704 [hep-th]

Search this site

Support Renormalization

If you want to support you can spread the word on social media or make a small donation


14B1 D. Anselmi

Read in flash format


Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)