Recent theorems

Recent Papers

Archive for September 2018

We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances.

PDF

PhilSci 15048

We elaborate on the idea of fake particle and its physical consequences. When a theory contains fakeons, the true classical limit is determined by the quantization and a subsequent process of “classicization”. One of the major predictions due to the fake particles is the violation of microcausality, which survives the classical limit. This fact gives hope to find ways to detect the violation experimentally. Quantum gravity predicts that at least one fakeon exists in nature, with spin 2 and a mass that could be much smaller than the Planck mass. By classicizing the theory, we work out the corrections to the field equations of general relativity. We show that the finalized equations have, in simple terms, the form $\langle F\rangle =ma$, where $\langle
F\rangle $ is an average that includes a little bit of “future”.

PDF

arXiv: 1809.05037 [hep-th]

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)