## Archive for October 2002

I discuss several issues about the irreversibility of the RG flow and the trace anomalies $c$, $a$ and $a’$. First I argue that in quantum field theory: $i$) the scheme-invariant area $\Delta a’$ of the graph of the effective beta function between the fixed points defines the length of the RG flow; $ii$) the minimum of $\Delta a’$ in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points; $iii$) in even dimensions, the distance between the fixed points is equal to $\Delta a =a_{UV}-a_{IR}$. In even dimensions, these statements imply the inequalities $0 \leq \Delta a \leq \Delta a’$ and therefore the irreversibility of the RG flow. Another consequence is the inequality $a \leq c$ for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain “oriented-triangle inequalities”, imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is irreversible also in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of $d=3$ theories where the RG flow is integrable at each order of the large $N$ expansion.

Class.Quant.Grav. 21 (2004) 29-50 | DOI: 10.1088/0264-9381/21/1/003

I study some classes of RG flows in three dimensions that are classically conformal and have manifest $g \rightarrow 1/g$ dualities. The RG flow interpolates between known (four-fermion, Wilson-Fischer, $\phi_3^6$) and new interacting fixed points. These models have two remarkable properties: $i$) the RG flow can be integrated for arbitrarily large values of the couplings g at each order of the $1/N$ expansion; $ii$) the duality symmetries are exact at each order of the $1/N$ expansion. I integrate the RG flow explicitly to the order ${\cal O}(1/N)$, write correlators at the leading-log level and study the interpolation between the fixed points. I examine how duality is implemented in the regularized theory and verified in the results of this paper.

Nucl.Phys. B658 (2003) 440 | DOI: 10.1016/S0550-3213(03)00174-3