Recent theorems

Recent Papers

Archive for November 1994

I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the $k=1$ Belavin et al. instanton and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with $G=SU(2)$ is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. From topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space $M$, boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with $G=SU(2)$ on $R^4$ and topological gravity on ALE manifolds.

PDF

Nucl.Phys. B439 (1995) 617-649 | DOI: 10.1016/0550-3213(95)00024-M

arXiv:hep-th/9411049

Search this site

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)