Recent theorems

Recent Papers

Archive for September 1993

We consider the problem of removing the divergences in an arbitrary gauge-field theory (possibly nonrenormalizable). We show that this can be achieved by performing, order by order in the loop expansion, a redefinition of some parameters (possibly infinitely many) and a canonical transformation (in the sense of Batalin and Vilkovisky) of fields and BRS sources. Gauge-invariance is turned into a suitable quantum generalization of BRS-invariance. We define quantum observables and study their properties. We apply the result to renormalizable gauge-field theories that are gauge-fixed with a nonrenormalizable gauge-fixing and prove that their predictivity is retained. A corollary is that topological field theories are predictive. Analogies and differences with the formalisms of classical and quantum mechanics are pointed out.


Class.Quant.Grav. 11 (1994) 2181-2204 | DOI: 10.1088/0264-9381/11/9/005


Search this site

Support Renormalization

If you want to support you can spread the word on social media or make a small donation


14B1 D. Anselmi

Read in flash format


Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)