Course

19R1 D. Anselmi
Theories of gravitation

Last update: October 5th 2018

PhD course – 54 hours – Videos of lectures and PDF files of slides

To be held in the first part of 2019 – Stay tuned

Program

Recent Papers

We study the main options for a unitary and renormalizable, local quantum field theory of the gravitational interactions. The first model is a Lee-Wick superrenormalizable higher-derivative gravity, formulated as a nonanalytically Wick rotated Euclidean theory. We show that, under certain conditions, the $S$ matrix is unitary when the cosmological constant vanishes. The model is the simplest of its class. However, infinitely many similar options are allowed, which raises the issue of uniqueness. To deal with this problem, we propose a new quantization prescription, by doubling the unphysical poles of the higher-derivative propagators and turning them into Lee-Wick poles. The Lagrangian of the simplest theory of quantum gravity based on this idea is the linear combination of $R$, $R_{\mu \nu}R^{\mu \nu }$, $R^{2}$ and the cosmological term. Only the graviton propagates in the cutting equations and, when the cosmological constant vanishes, the $S$ matrix is unitary. The theory satisfies the locality of counterterms and is renormalizable by power counting. It is unique in the sense that it is the only one with a dimensionless gauge coupling.

J. High Energy Phys. 06 (2017) 086 | DOI: 10.1007/JHEP06(2017)086

arXiv: 1704.07728 [hep-th]

OSF preprints | DOI: 10.31219/osf.io/rbt2c

hal-01900209

→ Mathematica files attached to paper

Embedded PDFFullscreen PDF view

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)