Recent theorems

Recent Papers

Consider a functional integral
\mathcal{I}=\int [\mathrm{d}\varphi ]\hspace{0.02in}\exp \left( -S(\varphi)+\int J\left( \varphi -bU\right) \right) ,
where $U(\varphi ,bJ)$ is a local function of $\varphi$ and $J$, and $b$ is a constant. Then there exists a perturbatively local change of variables
\varphi =\varphi (\varphi ^{\prime },b,bJ)=\varphi ^{\prime }+\mathcal{O}(b),
expressed as a series expansion in $b$, such that
\mathcal{I}=\int [\mathrm{d}\varphi ^{\prime }]\hspace{0.02in}\exp \left(
-S^{\prime }(\varphi ^{\prime },b)+\int J\varphi ^{\prime }\right) ,
where $S^{\prime }(\varphi ^{\prime },b)=S(\varphi (\varphi^{\prime },b,0))$.


Make the change of variables
\phantom{(1)}\qquad\qquad\qquad\varphi _{1}=\varphi -bU(\varphi ,bJ) \qquad\qquad\qquad (1)
in the functional integral. The functional measure is invariant, since we are treating (1) perturbatively in $b$. Call $\varphi=f_{1}(\varphi _{1},b)$ the inverse of (1) at $J=0$. We can write
S(\varphi )=S(f_{1}(\varphi _{1},b))+b^{2}\int JU_{1},
for a suitable local function $U_{1}(\varphi _{1},bJ,b)$. Then we have
\mathcal{I}=\int [\mathrm{d}\varphi _{1}]\hspace{0.02in}\exp \left(
-S_{1}(\varphi _{1},b)+\int J\left( \varphi _{1}-b^{2}U_{1}\right) \right)
where $S_{1}(\varphi _{1},b)=S(f_{1}(\varphi _{1},b))$. At this point, we are in the same situation we started with, but $U$ is replaced by $bU_{1}$, which is one order of $b$ higher. Repeating the step made above, we make the change of variables $\varphi _{2}=\varphi_{1}-b^{2}U_{1}$ and get
\mathcal{I}=\int [\mathrm{d}\varphi _{2}]\hspace{0.02in}\exp \left(
-S_{2}(\varphi _{2},b)+\int J\left( \varphi _{2}-b^{3}U_{2}\right) \right),
where $S_{2}(\varphi _{2},b)=S_{1}(f_{2}(\varphi _{2},b),b)$, $\varphi _{1}=f_{2}(\varphi _{2},b)$ is the inverse of $\varphi_{2}=\varphi _{1}-b^{2}U_{1}$ at $J=0$ and $U_{2}(\varphi _{2},bJ,b)$ is a local function. Proceeding indefinitely like this, we prove the theorem. $\Box$

This theorem was proved in

D. Anselmi, A general field-covariant formulation of quantum field theory,
12A1 Renorm
Eur.Phys.J. C73 (2013) 2338 | DOI: 10.1140/epjc/s10052-013-2338-5
and arXiv:1205.3279 [hep-th]

It is useful to convert the functional integral back to the conventional form (the one where the integrand depends on $J$ only via the term $\int J\varphi$ in the exponent) after a generic change of integration field-variables.

Search this site

Support Renormalization

If you want to support you can spread the word on social media or make a small donation


14B1 D. Anselmi

Read in flash format


Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)